Answer:
Explanation:
The solution to given problem is attached below
Answer:
common fate
Explanation:
The gestalt effect may be defined as the ability of our brain to generate the whole forms from the groupings of lines, points, curves and shapes. Gestalt theory lays emphasis on the fact that whole of anything is much greater than the parts.
Some of the principles of Gestalt theory are proximity, similarity, closure, symmetry & order, figure or ground and common fate.
Common fate : According to this principle, people will tend to group things together which are pointed towards or moving in a same direction. It is the perception of the people that objects moving together belongs together.
Answer:
\epsilon = 0.028*0.3 = 0.0084
Explanation:
\frac{P_1}{\rho} + \frac{v_1^2}{2g} +z_1 +h_p - h_l =\frac{P_2}{\rho} + \frac{v_2^2}{2g} +z_2
where P_1 = P_2 = 0
V1 AND V2 =0
Z1 =0
h_P = \frac{w_p}{\rho Q}
=\frac{40}{9.8*10^3*0.2} = 20.4 m
20.4 - (f [\frac{l}{d}] +kl) \frac{v_1^2}{2g} = 10
we know thaTV =\frac{Q}{A}
V = \frac{0.2}{\pi \frac{0.3^2}{4}} =2.82 m/sec
20.4 - (f \frac{60}{0.3} +14.5) \frac{2.82^2}{2*9.81} = 10
f = 0.0560
Re =\frac{\rho v D}{\mu}
Re =\frac{10^2*2.82*0.3}{1.12*10^{-3}} =7.53*10^5
fro Re = 7.53*10^5 and f = 0.0560
\frac{\epsilon}{D] = 0.028
\epsilon = 0.028*0.3 = 0.0084
Given:
outer radius, R' = 10 m
inner diameter, d = 2 m
inner radius, R =
= 1 m
surface temperature, T' = 
Thermal conductivity of soil, K = 0.52 W/mK
Solution:
To calculate the thermal temperature of conductor, T, we know amount of heat, Q is given by :
Q = 
500 =
T = 68.86 +20 =
Therefore, outside surface temperature is
Answer:
b). The same for all pipes independent of the diameter
Explanation:
We know,


From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.
We also know,
Factors on which thermal resistance of insulation depends are :
1. Thickness of the insulation
2. Thermal conductivity of the insulating material.
Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.