Answer:
7
\/
/
/
/
/
/
/
/
////
Step-by-step explanation:
F(x) is continuous for all x.
Pick a point and show that f(x) is either negative or positive. Pick another point and show that f(x) is negative, if positive, or positive, if negative.
At x = 30, f(30) - 1000 = 900 + 10sin(30) - 1000 ≤ 0
Now, show at another point f(x) - 1000 is positive, and hence, there would be root between 30 and such point.
Let's pick 40.
At x = 40, f(40) - 1000 = 1600 + 10sin(40) - 1000 ≥ 0
Since f(x) - 1000 is continuous, there lies a root between 30 and 40, and hence, 30 ≤ c ≤ 40
Given:


To find:
The rate of change in volume at 
Solution:
We know that, volume of a cone is

Differentiate with respect to t.
![\dfrac{dV}{dt}=\dfrac{1}{3}\pi\times \left[(r^2\dfrac{dh}{dt}) + h(2r\dfrac{dr}{dt})\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Cpi%5Ctimes%20%5Cleft%5B%28r%5E2%5Cdfrac%7Bdh%7D%7Bdt%7D%29%20%2B%20h%282r%5Cdfrac%7Bdr%7D%7Bdt%7D%29%5Cright%5D)
Substitute the given values.
![\dfrac{dV}{dt}=\dfrac{1}{3}\times \dfrac{22}{7}\times \left[(120)^2(-2.1) +175(2)(120)(1.4)\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20%5Cdfrac%7B22%7D%7B7%7D%5Ctimes%20%5Cleft%5B%28120%29%5E2%28-2.1%29%20%2B175%282%29%28120%29%281.4%29%5Cright%5D)
![\dfrac{dV}{dt}=\dfrac{22}{21}\times \left[-30240+58800\right]](https://tex.z-dn.net/?f=%5Cdfrac%7BdV%7D%7Bdt%7D%3D%5Cdfrac%7B22%7D%7B21%7D%5Ctimes%20%5Cleft%5B-30240%2B58800%5Cright%5D)


Therefore, the volume of decreased by 29920 cubic inches per second.
Answer:
25$
Step-by-step explanation:
Add all of the days up and divide by 7
To solve this we are going to use the formula fro the force applied to a spring:

where

is the spring constant

is the extension
Since we know the

, we can replace that in our formula and solve for

:


where

is the acceleration

is the spring constant

is the extension

is the mass
We know for our problem that

,

, and

. So lets replace those values in our formula to find

:



We can conclude that the acceleration of the block when s=0.4m is

.