The answer to your question is $231
Answer:
5901
Step-by-step explanation:
The margin of error is the critical value times the standard error.
ME = CV × SE
For α = 0.05, the critical value is z = 1.96.
The standard error of a proportion is √(pq/n). Given p = 0.04, then q = 1−p = 0.96.
The margin of error is 0.5% or 0.005.
Plugging in:
0.005 = 1.96 √(0.04 × 0.96 / n)
n ≈ 5901
Given : tan 235 = 2 tan 20 + tan 215
To Find : prove that
Solution:
tan 235 = 2 tan 20 + tan 215
Tan x = Tan (180 + x)
tan 235 = tan ( 180 + 55) = tan55
tan 215 = tan (180 + 35) = tan 35
=> tan 55 = 2tan 20 + tan 35
55 = 20 + 35
=> 20 = 55 - 35
taking Tan both sides
=> Tan 20 = Tan ( 55 - 35)
=> Tan 20 = (Tan55 - Tan35) /(1 + Tan55 . Tan35)
Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1
=> Tan 20 = (Tan 55 - Tan 35) /(1 + 1)
=> Tan 20 = (Tan 55 - Tan 35) /2
=> 2 Tan 20 = Tan 55 - Tan 35
=> 2 Tan 20 + Tan 35 = Tan 55
=> tan 55 = 2tan 20 + tan 35
=> tan 235 = 2tan 20 + tan 215
QED
Hence Proved
$216 x 0.08 = $17.28.
Therefore $17.28 was collected for sales tax.
Answer: Barbarino's rentals has a better deal.
She has to drive 887.5 miles to spend the same amount at either company.
Step-by-step explanation:
Hi, to answer this question we have to analyze the information given:
<em>Mr.kotters rentals (A)
</em>
- <em>$99 PER WEEK
</em>
- <em>$0.11per mile over 100 miles
</em>
<em>Barbarino's rentals (B)
</em>
- <em>$75 per week
</em>
- <em>$0.15 per mile over 150 miles
</em>
For "A"
Cost = 0.11 (432-100) + 99 = $135.52
For "B"
Cost= 0.15 (432-150) +75 = $117.3
Barbarino's rentals has a better deal, since $117.3(B) < $135.52 (A)
To find how many miles would Glenna drive before she would be spending the same amount at either company:
A =B
0.11 (M-100) + 99 =0.15 (M-150) +75 = $117.3
Solving for M (miles)
0.11 M -11+99 = 0.15 M -22.5+75
-11 +99 +22.5 -75 =0.15M -0.11 M
35.5 = 0.04M
35.5/0.04 = M
887.5 =M
She has to drive 887.5 miles to spend the same amount at either company.