Answer : The concentration of
in the solution is, 
Explanation :
First we have to calculate the volume of aqueous solution that is water.
Density of water = 1.00 g/mL
Mass of water = 2400 g

Now we have to calculate the concentration of ammonia solution.
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Molar mass of
= 17 g/mole
Now put all the given values in this formula, we get:

Therefore, the concentration of
in the solution is, 
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
Final pressure = 2.3225 atm
Amontons’s law states that
At constant volume and number of molecules, the pressure of a given mass of gas is directly proportional to its temperature
Explanation:
Temperature causes increased excitement of gas molecules increasing the number of collisions with the walls of the container which is sensed as increase in pressure
Amontons’s law: P/T = Constant at constant V and n
That is P1/T1 = P2/T2
Where temperature is given in Kelvin
Hence T1 of 10°C = 273.15 + 10 = 283.15K
Also temperature T2 of 40°C = 313.15 K
Hence
P2 = (P1/T1)×T2 = (2.1/283.15)×313.15 = 2.3225 atm
<span>According to the law of conservation of energy and due that all the chemical energy is converted to other three types of energy, the total sum of these three energies after the explosion must be the same than the initial energy, that is 100 units.</span>