Answer:
H₃PO₄/H₂PO₄⁻ and HCO₃⁻/CO₃²⁻
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, H₃PO₄ is the acid, because it donates a proton to the carbonate ion.
CO₃²⁻ is the base, because it accepts a proton from the phosphoric acid.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
H₃PO₄/H₂PO₄⁻ make one conjugate acid/base pair, and HCO₃⁻/CO₃²⁻ are the other conjugate acid/base pair.
H₃PO₄ + CO₃²⁻ ⇌ H₂PO₄⁻ + HCO₃⁻
acid base conj. conj.
base acid
In this instance we can use the ideal gas law equation to find the number of moles of gas inside the refrigerator
PV = nRT
where
P - pressure - 101 000 Pa
V - volume - 0.600 m³
n - number of moles
R - universal gas constant - 8.314 J/mol.K
T - temperature - 282 K
substituting these values in the equation
101 000 Pa x 0.600 m³ = n x 8.314 J/mol.K x 282 K
n = 25.8 mol
there are 25.8 mol of the gas
to find the mass of gas
mass of gas = number of moles x molar mass of gas
mass = 25.8 mol x 29 g/mol = 748.2 g
mass of gas present is 748.2 g
Answer:
There is None
Explanation:
This is because it is a derived function dependent on other factors.