Answer:
The distance is 6259.31 meters.
Explanation:
We shall use the Reyligh criterion to solve the problem
For diffraction due to circular aperture we have
Assuming that human eye is circular we have


Applying the given values we have

Answer:
The ratio of the momentum imparted to gun #1 to that imparted to gun #2 is equal to 2 : 1
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
The activation energy for this reaction, Ea = 159.98 kJ/mol
Explanation:
Using the Arrhenius equation as:

Where, Ea is the activation energy.
R is the gas constant having value 8.314 J/K.mol
K₂ and K₁ are the rate constants
T₂ and T₁ are the temperature values in kelvin.
Given:
K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K
K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K
Applying in the equation as:

Solving for Ea as:
Ea = 159982.23 J /mol
1 J/mol = 10⁻³ kJ/mol
Ea = 159.98 kJ/mol
Muscles function only by contracting. This makes it necessary for one end of the muscle to be fixed and the other mobile.
Take the bicep for example.
Its origin is at the shoulder and its two heads connect to the bones of the forearm, the radius and ulna.
Now, had the muscle not been fixed at one end, and contracted, it would pull both our shoulder and forearm together resulting in an ineffective movement. The desired motion is to lift the forearm (proximal and distal movement) which can only be achieved if the bicep is fixed at the shoulder and allowed to move at the forearm.
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N