answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
2 years ago
8

In an experiment, Mary compares a collision of two 1-kilogram steel balls with a collision of two 1-kilogram foam rubber balls.

She makes sure that, except for the material, the two collisions are the same. Mary finds that the force of impact of the steel ball collision is greater than the force of impact of the foam rubber ball collision.
From her force measurements, Mary concludes that the foam rubber balls’ acceleration during the collision was (BLANK) the steel balls’ acceleration. She concludes that the collision between the foam rubber balls is an collision.

BLANK 1
Greater than
Less than
The same as

BLANK 2
Inelastic
Elastic
Physics
1 answer:
EastWind [94]2 years ago
7 0
<span>Mary concludes that the foam rubber balls’ acceleration during the collision was THE SAME AS the steel balls’ acceleration. She concludes that the collision between the foam rubber balls is an ELASTIC collision.

The masses of the two objects are the same therefore its acceleration would also become the same. It is an elastic collision because little or less friction occurred in the situation creating kinetic energy.</span>
You might be interested in
A ball, which has a mass of 1.25 kg, is thrown straight up from the top of a building 225 meters tall with a velocity of 52.0 m/
Elena-2011 [213]

First we will find the speed of the ball just before it will hit the floor

so in order to find the speed of the cart we will first use energy conservation

KE_i + PE_i = KE_f + PE_f

\frac{1}{2}mv_i^2 + mgh = \frac{1}{2}mv_f^2 + 0

\frac{1}{2}(1.25)(52)^2 + 1.25(9.8)(225) = \frac{1}{2}(1.25)v_f^2

So by solving above equation we will have

v_f = 84.3 m/s

now in order to find the momentum we can use

P = mv

P = 1.25 \times 84.3

P = 105.4 kg m/s

6 0
2 years ago
3. A large crane lifts a 25,000 kg mass in the air. The amount of work that must be done by the
andreev551 [17]

\mathfrak{\huge{\orange{\underline{\underline{AnSwEr:-}}}}}

Actually Welcome to the concept of Efficiency.

Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%

The efficiency is => 22% => 22/100.

so we get as,

E = W(output) /W(input)

hence, W(output) = E x W(input)

so we get as,

W(output) = (22/100) x 2.2 x 10^7

=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7

hence, W(output) = 4.84 x 10^6 J

The useful work done on the mass is 4.84 x 10^6 J

5 0
2 years ago
A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
babunello [35]

Answer:

v= 2413.5 m/s

Explanation:

maximum change of speed of rocket

=(initial exhaust velocity)×ln [(initialmass/finalmass)]

let initial mass= m

final mass = m-m(4/5) = m/5

[since the 80% of mass which is fuel is exhausted]

V-0 = 1500 ln (1/0.2)

V= 1500×1.609 = 2413.5 m/s

therefore, its exhaust speed v= 2413.5 m/s

4 0
2 years ago
Read 2 more answers
Given a die, would it be more likely to get a single 6 in six rolls, at least two 6s in twelve rolls, or at least one-hundred 6s
vichka [17]

Answer:

Explanation:

In first case we are interested in one time 6 in six rolls

Thus probability = number of chances required/Total chances

= 1/6

Similarly in the second case probability = 2/12 = 1/6

In the same way in last case probability = 100/600 = 1/6

The probability is the same . Thus all the cases has equal chances  

4 0
2 years ago
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
Other questions:
  • A worker pushes a 1.50 x 10^3 N crate with a horizontal force of 345 N a distance of 24.0 m. Assume the coefficient of kinetic f
    9·2 answers
  • Thermals created by warm air rising and cold air sinking are called___?
    11·1 answer
  • A recipe for candy requires that the liquid ingredients be stirred constantly until the liquid reaches a temperature of 140°C. W
    9·2 answers
  • A superman cyclist rode a bike uphill at 20 miles/hour for two hours. To sustain this constant speed the cyclist was exerting 50
    10·1 answer
  • A scared elephant has a mass of 7000 kg. The mouse that frightened the elephant is 0.02 kg. The distance between the elephant an
    11·1 answer
  • Assume that you stay on the Earth's surface. What is the ratio of the sun's gravitational force on you to the earth's gravitatio
    9·1 answer
  • Which of the answer choices is a true statement? Select all that apply. Metallic elements usually exist as molecules, combining
    7·1 answer
  • An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
    10·1 answer
  • In seismology, the P wave is a longitudinal wave. As a P wave travels through the Earth, the relative motion between the P wave
    13·1 answer
  • 49. A vertically hung 0.50-meter- long spring is stretched from its equilibrium position to a length of 1.00 meter by a weight a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!