To find out time interval δt we need to substract initial time from the final time. In this question first number in the coordinates representes time:
δt=50 - 0
δt= 50s
TIme interval is 50s.
Answer:
a) 0.00019923%
b) 47.28%
Step-by-step explanation:
a) To find the probability of all sockets in the sample being defective, we can do the following:
The first socket will be in a group where 5 of the 38 sockets are defective, so the probability is 5/38
The second socket will be in a group where 4 of the 37 sockets are defective, as the first one picked is already defective, so the probability is 4/37
Expanding this, we have that the probability of having all 5 sockets defective is: (5/38)*(4/37)*(3/36)*(2/35)*(1/34) = 0.0000019923 = 0.00019923%
b) Following the same logic of (a), the first socket have a chance of 33/38 of not being defective, as we will pick it from a group where 33 of the 38 sockets are not defective. The second socket will have a chance of 32/37, and so on.
The probability will be (33/38)*(32/37)*(31/36)*(30/35)*(29/34) = 0.4728 = 47.28%
I believe it is 7.875. If you want it simplified it would be 8 ounces. Please give me brainliest!
It's defiantly not C. I made a 90% but missed this question. I hope this helps you cross it down. My next guess would be D.
Answer:
Step-by-step explanation:
Data given and notation
represent the sample mean
represent the standard deviation for the sample
sample size
represent the value that we want to test
represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
represent the p value for the test (variable of interest)
State the null and alternative hypotheses.
We need to conduct a hypothesis in order to determine if the mean is less than 56, the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
We don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:
(1)
t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".
Calculate the statistic
We can replace in formula (1) the info given like this: