<span>2 KClO3(s) → 3 O2(g) + 2 KCl(s)
</span><span>Note: MnO2 (Manganese Dioxide) is not part of the reaction. A catalyst lowers the activation energy and increases both forward and reverse reactions at equal rates.
</span>
molar mass of KClO3 = 122.5
Moles of KClO3 = 3.45 / 122.55 = 0.028
Moles of O2 produce =

= 0.042 moles
molar mass of O2 = 32
so, mass of O2 = 32 x 0.042 = 1.35 g
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer: C
I hope this helped you
Answer:
It will mess up the orbit around the sun
Explanation:
Answer:
The possible structures are ketone and aldehyde.
Explanation:
Number of double bonds of the given compound is calculated using the below formula.

=Number of double bonds
= Number of carbon atoms
= Number of hydrogen atoms
= Number of nitrogen atoms
The number of double bonds in the given formula - 

The number of double bonds in the compound is one.
Therefore, probable structures is as follows.
(In attachment)
The structures I and III are ruled out from the probable structures because the signal in 13C-NMR appears at greater than 160 ppm.
alkene compounds I and II shows signal less than 140 ppm.
Hence, the probable structures III and IV are given as follows.
The carbonyl of structure I appear at 202 and ketone group of IV appears at 208 in 13C, which are greater than 160.
Hence, the molecular formula of the compound
having possible structure in which the signal appears at greater than 160 ppm are shown aw follows.