answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
2 years ago
9

An acrobatic airplane performs a loop at an airshow. The centripetal acceleration the plane experiences is 14.7 m/s2.  If it tak

es the pilot 45.0 seconds to complete the loop, what is the radius of the loop? Round your answer to the nearest whole number.
Physics
2 answers:
nika2105 [10]2 years ago
5 0
The formula is 45^2(14.7)/4pi^2. 
The answer is 754m. 
Ivahew [28]2 years ago
4 0

Answer:

754.8 m

Explanation:

The centripetal acceleration is given by

a=\frac{v^2}{r}

where v is the speed of the airplane and r is the radius of the loop.

We can rewrite the speed of the airplane as the ratio between the length of the circumference (2 \pi r) and the time taken:

v=\frac{2 \pi r}{t}

Substituting in the formula of the acceleration, we have

a=\frac{(2 \pi)^2 r^2}{t^2 r}=\frac{(2 \pi)^2 r}{t^2}

Re-arranging the formula and putting the numbers of the problem into it, we can find the radius of the loop, r:

r=\frac{at^2}{(2 \pi)^2}=\frac{(14.7 m/s^2)(45.0 s)^2}{(2 \pi)^2}=754.8 m

You might be interested in
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
Two small diameter, 10gm dielectric balls can slide freely on a vertical channel each carry a negative charge of 1microcoulomb.
dimulka [17.4K]

Answer:

The distance of separation is d = 0.092 \ m

Explanation:

The mass of the each ball is  m= 10 g  =  0.01 \ kg

 The negative charge on each ball is q_1 =q_2=q =  1 \mu C  =  1 *10^{-6} \ C

Now we are told that the lower ball is  restrained from moving this implies that the net force acting on it is  zero

Hence the gravitational force acting on the lower ball is equivalent to the electrostatic force i.e

          F =  \frac{kq_1 * q_2}{d}

=>       m* g  =  \frac{kq_1 * q_2}{d}

here k the the coulomb's  constant with a value  k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.

So  

      0.01 * 9.8  =  \frac{ 9*10^9 *[1*10^{-6} * 1*10^{-6}]}{d}

            d = 0.092 \ m

5 0
2 years ago
You are learning about energy transformations in science class. Mel and Sam's built this set-up to see if light energy could be
Allisa [31]
I think it might be heat energy. light transforms into heat energy
5 0
2 years ago
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
Svetllana [295]

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

8 0
2 years ago
Babylonians obtained wood for building from
yanalaym [24]

Answer: t-trees?

i couldn't find anything on this topic but the only thing i could think of was trees, maybe if you go to a history website you can find a answer there :)

hope i helped a little :)

6 0
2 years ago
Other questions:
  • A horse does 860 j of work in 420 seconds while pulling a wagon. what is the power output of the horse? round your answer to the
    12·2 answers
  • An electric resistance heater is embedded in a long cylinder of diameter 30 mm. when water with a temperature of 25°c and veloc
    8·1 answer
  • Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
    7·1 answer
  • In the future, people will only enjoy one sport: Electrodes. In this sport, you gain points when you cause metallic discs hoveri
    15·1 answer
  • What is the Physics Primer?
    15·2 answers
  • Which of the following is NOT a good way to reduce fuel consumption?
    15·2 answers
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
  • The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
    7·1 answer
  • You work for an advertising company and have been hired to place a blimp above a football stadium. The angle of elevation from a
    12·1 answer
  • Suppose Mitch Marner (mass=80kg) and Zdano Chara (mass=116kg) collide head-on at the blue line when Marner is skating 10m/s and
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!