vf^2 = 2ad
vf^2 = 2(9.81)(44m)
vf^2 = 863.28
vf = √863.28
vf = 29.4 - using equations of motion
ME = PE + KE
ME = mgh + 1/2mv^2
ME = (1)(9.81)(44) + 1/2(1)(3^2)
ME = 431.64 + 4.5
ME = 436.14 - using conservation of energy
hope this helps :)
Answer:
1.77 x 10^-8 C
Explanation:
Let the surface charge density of each of the plate is σ.
A = 4 x 4 = 16 cm^2 = 16 x 10^-4 m^2
d = 2 mm
E = 2.5 x 10^6 N/C
ε0 = 8.85 × 10-12 C2/N ∙ m2
Electric filed between the plates (two oppositively charged)
E = σ / ε0
σ = ε0 x E
σ = 8.85 x 10^-12 x 2.5 x 10^6 = 22.125 x 10^-6 C/m^2
The surface charge density of each plate is ± σ / 2
So, the surface charge density on each = ± 22.125 x 10^-6 / 2
= ± 11.0625 x 10^-6 C/m^2
Charge on each plate = Surface charge density on each plate x area of each plate
Charge on each plate = ± 11.0625 x 10^-6 x 16 x 10^-4 = ± 1.77 x 10^-8 C
Answer:
Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.
Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>