<h2>
Therefore he took 40 gram of
type solution and 10 gram of
type solution.</h2>
Step-by-step explanation:
Given that , A pharmacist 13% alcohol solution another 18% alcohol solution .
Let he took x gram solution of
type solution
and he took (50-x) gram of
type solution.
Total amount of alcohol =
gram
Total amount of solution = 50 gram
According to problem
⇔![\frac{ [x\times\frac{13}{100}] +[(50 -x) \times\frac{18}{100} ]}{50}= \frac{14}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5Bx%5Ctimes%5Cfrac%7B13%7D%7B100%7D%5D%20%2B%5B%2850%20-x%29%20%5Ctimes%5Cfrac%7B18%7D%7B100%7D%20%5D%7D%7B50%7D%3D%20%5Cfrac%7B14%7D%7B100%7D)
⇔
⇔- 5x= 700 - 900
⇔5x = 200
⇔x = 40 gram
Therefore he took 40 gram of
type solution and (50 -40)gram = 10 gram of
type solution.
Answer: 2,000
Step-by-step explanation: 22,000 - 20,000 = 2,000
Angie’s current equity on her car is 2,000
Answer: C) For every original price, there is exactly one sale price.
For any function, we always have any input go to exactly one output. The original price is the input while the output is the sale price. If we had an original price of say $100, and two sale prices of $90 and $80, then the question would be "which is the true sale price?" and it would be ambiguous. This is one example of how useful it is to have one output for any input. The input in question must be in the domain.
As the table shows, we do not have any repeated original prices leading to different sale prices.
44kdjdjdjdjdjjdjdmddnjdjd