answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
2 years ago
6

The element carbon (C) is most likely to form covalent bonds with the element beryllium (Be). krypton (Kr). selenium (Se). sodiu

m (Na).
Chemistry
2 answers:
o-na [289]2 years ago
7 0

Answer: Option (c) is the correct answer.

Explanation:

Atomic number of carbon is 6 and its electronic configuration is 2, 4. So, in order to complete its octet, it requires 4 more electrons.

Therefore, carbon form covalent bonds, that is, it shares electrons with and electron deficient atom.

Krypton is a noble gas and has completely filled octet. So, it will neither give to share its electrons with carbon atom.

Whereas beryllium and sodium does not have enough valence electrons to share. Hence, they will not form bond with carbon atom.

On the other hand, selenium being a non-metal is electron deficient and therefore, in order to complete its octet it will share its electrons with carbon atom.

Thus, we can conclude that the element carbon (C) is most likely to form covalent bonds with the element selenium (Se).

noname [10]2 years ago
5 0

 The element  that is most  likely  to form covalent  bonds  with  carbon (C)  is

Selenium  (Se)

<em><u>Explanation</u></em>

<em><u> </u></em> Covalent  bond is  formed   when  there is sharing of electrons among  two   or more non metals.

Both carbon  and selenium are non metals  therefore they  react to form  a covalent  bond  by sharing electron.

 Despite  krypton been a non metal  it does  not form a covalent  bond with carbon since krypton is  inert ( non reactive).

Beryllium (Be)  and  sodium (Na) are  metals therefore  they form  ionic bond with  carbon instead  of covalent  bond.

You might be interested in
A 0.72-mol sample of PCl5 is put into a 1.00-L vessel and heated. At equilibrium, the vessel contains 0.40 mol of PCl3(g) and 0.
Sonja [21]

Answer:

Equilibrium constant for PCl_5 is 0.5

Equilibrium constant for decomposition of NO_2 is 1.79 \times 10^{-14}

Explanation:

PCl_5 dissociates as follows:

                    PCl_5 \rightleftharpoons PCl_3+Cl_2

initial          0.72 mol     0         0

at eq.     0.72 - 0.40   0.40      0.40

Expression for the equilibrium constant is as follows:

k=\frac{[PCl_3][Cl_2]}{[PCl_5]}

Substitute the values in the above formula to calculate equilibrium constant as follows:

k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5

Therefore, equilibrium constant for PCl_5 is 0.5

Now calculate the equilibrium constant for decomposition of  NO_2

It is given that 3.3 \times 10^{-3} \% is decomposed.

NO_2 decomposes as follows:

                                  2NO_2 \rightleftharpoons 2NO + O_2

initial                            1.0 M       0           0

at eq. concentration of  NO_2   is:

[NO_2]_{eq}=1-(0.000066) = 0.999934\ M

[NO]_{eq}=6.6 \times 10^{-5}\ M

[O_2]_{eq}=3.3\times 10^{-5} = 3.3\times 10^{-5}\ M      

Expression for equilibrium constant is as follows:

K=\frac{[NO]^2[O_2]}{[NO_2]^2}

Substitute the values in the above expression

K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}

Equilibrium constant for decomposition of NO_2 is 1.79 \times 10^{-14}

8 0
2 years ago
The activation energy for the reaction no2(g)+co(g)⟶no(g)+co2(g) is ea = 75 kj/mol and the change in enthalpy for the reaction i
Nonamiya [84]
Answer: 350 kj/mol


Explanation:

As shown below this expression gives the activation energy of the reverse reaction:

EA reverse reaction = EA forward reaction + | enthalpy change |

1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:

EA = energy of the transition state - energy of the reactants.

2) The activation energy of the forward reaction given is:

EA = energy of the transition state - energy of  [ NO2(g) + CO(g) ] = 75 kj/mol

3) The negative enthalpy change - 275 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 75 kj / mol - 275 kj / mol = - 200 kj/mol

4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.

5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:

EA reverse reaction = EA forward reaction + | enthalpy change |

EA reverse reaction = 75 kj / mol + |-275 kj/mol | = 75 kj/mol + 275 kj/mol = 350 kj/mol.

And that is the answer, 350 kj/mol

3 0
2 years ago
he first-order rate constant for the gas-phase decomposition of dimethyl ether, (CH3)2O → CH4 + H2 + CO is 3.2 ✕ 10−4 s−1 at 450
seropon [69]

Answer:

0.290 atm is the pressure of the system after 7.7min

Explanation:

The general first-order rate constant is:

ln [A] = -kt + ln [A]₀

<em>Where [A] is concentration of A in time t,</em>

<em>K is rate constant, 3.2x10⁻⁴s⁻¹</em>

<em>[A]₀ is initial concentration = 0.336atm.</em>

<em />

7.7 min are:

7.7min * (60s / 1min) = 462s

Solving:

ln [A] = -kt + ln [A]₀

ln [A] = -<em>3.2x10⁻⁴s⁻¹*462s</em> + ln [0.336atm]

ln [A] = -1.238

[A] =

<h3>0.290 atm is the pressure of the system after 7.7min</h3>

<em />

6 0
2 years ago
One liter of ocean water contains 35.06 g of salt. What volume of ocean water would contain 1.00 kg of salt? Express your answer
sweet [91]

Answer:

28.52 L

Explanation:

First, let's calculate the density of the ocean, which is the mass divided by the volume:

d = m/V

d = 35.06/1

d = 35.06 g/L

So, for a mass of 1.00 kg = 1000.00 g

d = m/V

35.06 = 1000.00/V

V = 1000.00/35.06

V = 28.52 L

How all the data are expressed with two significant figures, the volume must also be expressed with two.

7 0
2 years ago
In a group assignment, students are required to fill 10 beakers with 0.720 M CaCl2. If the molar mass of CaCl2 is 110.98 g/mol a
8_murik_8 [283]
The answer is 200 g.

If the molar mass of CaCl2 is 110.98 g/mol, this means there are 110.98 g in 1 L of 1 M solution.
Let's find how many g of CaCl2 are present in 0.720 M.
110.98 g : 1 M = x : 0.720 M
x = 110.98 g * 0.720 M : 1 M 
x = 79.90 g

So there are 79.90 g in 0.720 M. In other words, in 1 L of 0.720 M solution there will be  79.90 g.

Now, we need to prepare ten beakers with 250 mL of solutions:
10 * 250 mL = 2500 mL = 2.5 L

79.90 g : 1 L = x : 2.5 L
x = 79.90 g * 2.5 L : 1 L
x = 199.75 g ≈ 200 g
8 0
2 years ago
Read 2 more answers
Other questions:
  • How many moles of hydrogen gas are produced when 0.066 mole of sodium is completely reacted?
    14·2 answers
  • Magnesium has an atomic mass of 24.3. there are two isotopes of magnesium - one contains 12 neutrons and the other contains 13 n
    7·1 answer
  • The side chain (r group) of the amino acid serine is ch2oh. The side chain of the amino acid leucine is ch2ch(ch3)2. Where would
    8·1 answer
  • According to the following reaction, how many moles of Fe(OH)2 can form from 175.0 mL of 0.227 M LiOH solution? Assume that ther
    10·1 answer
  • Fusion and fission reactions are both nuclear reactions that can be used to produce energy. However, while fission reactions are
    15·1 answer
  • Determine whether the statement is true or false, and why? “Climate change could cause many habitats to be destroyed, leading to
    7·1 answer
  • Two atoms bonded together will remain some distance apart, minimizing the Question 1 options: A) potential energy of the bond. B
    10·1 answer
  • Draw the Lewis structures for CH3OH, CH2O and HCOOH. Indicate the hybrid orbital used in the sigma bonds for each of the carbon
    7·1 answer
  • Put the following elements into five pairs of elements that have similar chemical reactivity: F, Sr, P, Ca, O, Br, Rb, Sb, Li, S
    6·1 answer
  • An experiment was conducted to measure the effect of equal amounts of fertilizer on the growth of bean plants and corn plants. T
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!