To get the points at which the two boats meet we need to find the equations that model their movement:
Boat A:
vertex form of the equation is given by:
f(x)=a(x-h)^2+k
where:
(h,k) is the vertex, thus plugging our values we shall have:
f(x)=a(x-0)^2+5
f(x)=ax^2+5
when x=-10, y=0 thus
0=100a+5
a=-1/20
thus the equation is:
f(x)=-1/20x^2+5
Boat B
slope=(4-0)/(10+10)=4/20=1/5
thus the equation is:
1/5(x-10)=y-4
y=1/5x+2
thus the points where they met will be at:
1/5x+2=-1/20x^2+5
solving for x we get:
x=-10 or x=6
when x=-10, y=0
when x=6, y=3.2
Answer is (6,3.2)
9×2=18. add the tow zeros like this 9×2=18+00=1,800
Since the sum of scores must be at least 289:
72+78+70+x ≥ 289
Answer:
<u>The original three-digit number is 417</u>
Step-by-step explanation:
Let's find out the solution to this problem, this way:
x = the two digits that are not 7
Original number = 10x+7
The value of the shifted number = 700 + x
Difference between the shifted number and the original number = 324
Therefore, we have:
324 = (700 + x) - (10x + 7)
324 = 700 + x - 10x - 7
9x = 693 - 324 (Like terms)
9x = 369
x = 369/9
x = 41
<u>The original three-digit number is 417</u>