Answer : The number of bonding electrons and the number of non-bonding electrons are (4, 18).
Explanation :
The number of bonding electrons and non-bonding electrons in the structure of
is determined by the Lewis-dot structure.
Lewis-dot structure : It tell us about the number of valence electrons of an atom within a molecule and it is also shows the bonding between the atoms of a molecule and the lone-pair of electrons.
In the given structure, 'Xe' is the central atom and 'F' is the terminal atom.
Xenon has 8 valence electrons and fluorine has 7 valence electrons.
Total number of valence electrons in
= 8 + 2(7) = 22 electrons
From the Lewis-dot structure, we conclude that
The number of electrons used in bonding = 4
The number of electrons used in non-bonding (lone-pairs) = 22 - 4 = 18
Therefore, the number of bonding electrons and the number of non-bonding electrons are (4, 18).
The Lewis-dot structure of
is shown below.
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


Actually the strength
of London dispersion forces highly depend on the total number of electrons and
the area in which they are spread. We can see clearly that iodine will have the
strongest LDF's, and hence, have the highest boiling point (and melting point).
This is also the reason why iodine is a solid at room temperature, bromine is liquid
and chlorine and fluorine are gases.
Answer:
<span>Fluorine (F2)</span>
Answer:
by adding water into the mix
Explanation:
this will dissolve the salt