Answer:
Option d.
Step-by-step explanation:
we know that
The graph of a continuous probability distribution is a curve. Probability is represented by area under the curve.
The curve is called the probability density function (abbreviated as pdf).
We use the symbol f(x) to represent the curve
therefore
The probability density function f(x) represents . the height of the function at x.
Answer:
The value of the parameter is λ is 0.03553357
Step-by-step explanation:
Consider the provided function.
for −∞ < x < ∞.
It is given that standard deviation is given as 39.8 km.
Now we need to calculate the value of parameter λ.
The general formula for the probability density function of the double exponential distribution is: 
Where μ is the location parameter and β is the scale parameter.
Compare the provided equation with the above formula we get.
and μ = 0.
Standard deviation = √2β

Now substitute the value of β in
.

Hence, the value of the parameter is λ is 0.03553357
To solve this problem you must apply the proccedure shown below:
1. You have that the hyperbola <span>has a vertex at (0,36) and a focus at (0,39).
2. Therefore, the equation of the directrices is:
a=36
a^2=1296
c=39
y=a^2/c
3. When you susbtitute the values of a^2 and c into </span>y=a^2/c, you obtain:
<span>
</span>y=a^2/c
<span> y=1296/13
4. When you simplify:
y=432/13
Therefore, the answer is: </span><span>y = ±432/13</span>
<span>Garreth and Elisa ran together, Luigi and Jasmine went the same distance, and Logan and Jasmine have the same displacement in the opposite direction. This is the answer which is C</span>
Answer:
The probability that they are both male is 0.424 (3 d.p.)
Step-by-step explanation:
The first step is to find the probability of the first selection being male. This is calculated as number of male mice divided by total number of mice in the litter
Prob (1st male) = 8 ÷ 12 = 0.667
Next is to find the probability of the second selection also being male. Note that the question states that the first mice was selected without replacement. This means the first mouse taken results in a reduction in both the number of male mice and total number of mice in the litter.
Prob (2nd male) = (8 - 1) ÷ (12 - 1) = 7/11 = 0.636
Therefore,
Prob (1st male & 2nd male) = 0.667 × 0.636 = 0.424