Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0,057 = 5,7 %.
The correct option is C. The amount of MgCl2. we know this because <span>no matter how much you increase KOH, if you dont increase Mgcl2, the amount of Mg(OH)2 remains the same. Hope this works for you</span>
The ionization energy of an element is the amount of energy required to remove one mole of electrons from the element in its gaseous state. The equations for the first three are:
Fe(g) → Fe⁺(g) + e⁻
Fe⁺(g) → Fe⁺²(g) + e⁻
Fe⁺²(g) → Fe⁺³(g) + e
Concentration is the number of moles of solute in a fixed volume of solution
Concentration(c) = number of moles of solute(n) / volume of solution (v)
25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.
original solution molarity - 0.150 M
number of moles of LiOH in 1 L - 0.150 mol
number of LiOH moles in 0.125 L - 0.150 mol/ L x 0.125 L = 0.01875 mol
when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases
new volume - 125 mL + 25 mL = 150 mL
therefore new molarity is
c = 0.01875 mol / 0.150 L = 0.125 M
answer is 0.125 M
Lets organise the data given in the question
[ClO₂] (m) [OH⁻] (m) initial rate (m/s)
<span>0.060 0.030 0.0248
</span><span> 0.020 0.030 0.00276
</span><span> 0.020 0.090 0.00828
rate equation as follows
rate = k [</span>ClO₂]ᵃ [OH⁻]ᵇ
where k - rate constant
we need to find order with respect to ClO₂ therefore lets take the 2 equations where OH⁻ is constant.
1) 0.00276 = k [0.020]ᵃ[0.030]ᵇ
2) 0.0248 = k [0.060]ᵃ[0.030]ᵇ
divide first equation from the second
0.0248/0.00276 = [0.060/0.020]ᵇ
8.99 = 3ᵇ
8.99 rounded off to 9
9 = 3ᵇ
b = 2
order with respect to ClO₂ is 2