Given :
Displacement , y = 0.75 m .
Angular acceleration ,
.
Initial angular velocity ,
.
To Find :
The value of vertical velocity after time t = 0.25 s .
Solution :
By equation of circular motion is given by :

Putting all given values we get :

Now , vertical velocity is given by :

Therefore , the numerical value of the vertical velocity of the car at time t=0.25 s is 4.90 m/s .
Hence , this is the required solution .
Transverse wave as the wave is going up and down no compressions
Answer:
The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Explanation:
As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.
<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>
Where,
<em>R = Orbital radius (in this case) = 30.1 AU</em>
<em />
Plug the value of R in the equation (A):
<em>(A) => The circumference of the circle = 2*π*(30.1)</em>
<em> The circumference of the circle = </em><em>60.2π</em>
Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Answer:
THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM
Explanation:
1) The buoyant force acting on an object immersed in a fluid is:

where

is the density of the fluid,

is the volume of displaced fluid, and

is the gravitational acceleration.
2) We must calculate the volume of displaced fluid. Since the titanium object is completely immersed in the fluid (air), this volume corresponds to the volume of 1 Kg of titanium, whose density is

. Using the relationship between density, volume and mass, we find

3) Now we can recall the formula written at step 1) and calculate the buoyant force. The air density is

, so we have

4) The weight of 1 Kg of titanium is instead:

So, the buoyant force is negligible compared to the weight.