answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
2 years ago
10

Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running

start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first. alice reaches the surface of the lake first. alice and tom will reach the surface of the lake at the same time.
Physics
1 answer:
svetlana [45]2 years ago
3 0
<span>Alice and Tom will reach the surface of the lake at the same time. In this problem. Both Alice and Tom have 2 components to their velocities. A horizontal component and an increasing vertical component due to gravity. They start out with different horizontal components, but that component does not in any way contribute to their vertical velocities. Since they both started out at the same height and the same vertical velocities, they will reach the surface of the lake at the same time.</span>
You might be interested in
Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
Dafna11 [192]

Answer:

720 J

Explanation:

The gravitational potential energy that Essam loses for every metre is given by:

\Delta U=mg \Delta h

where

m=72 kg is Essam's mass

g=10 N/kg is the gravitational field strength

\Delta h=1 m is the difference in height

By substituting the numbers into the formula, we find

\Delta U=(72 kg)(10 N/kg)(1 m)=720 J

5 0
2 years ago
Read 2 more answers
A 15.0 kg load of bricks hangs from one end of a rope that passes over a small, frictionles pulley. A 28.0 kg counterweight is s
Talja [164]

Answer:

A) The free body diagrams for both the load of bricks and the counterweight are attached.

B) a = 2.96 m/s²

Explanation:

A)

The free body diagrams for both the load of bricks and the counterweight are attached.

B)

The acceleration of upward acceleration of the load of bricks is given by the following formula:

a = g(m₁ - m₂)/(m₁ + m₂)

where,

a = upward acceleration of load of bricks = ?

g = 9.8 m/s²

m₁ = heavier mass = mass of counterweight = 28 kg

m₂ = lighter mass = mass of load of bricks = 15 kg

Therefore, using these values in equation, we get:

a = (9.8 m/s²)(28 kg - 15 kg)/(28 kg + 15 kg)

<u>a = 2.96 m/s²</u>

3 0
2 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
A skydiver finds that she speeds up when she holds her arms close to her body. What does this do?
ArbitrLikvidat [17]

D. Reduces the force of air resistance

7 0
2 years ago
Read 2 more answers
Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
Rufina [12.5K]

Homologous Chromosomes

6 0
2 years ago
Read 2 more answers
Other questions:
  • The Earth has a magnetic field around it, which is generated by its molten core. This magnetic field exerts a force on compass d
    5·2 answers
  • Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
    15·1 answer
  • A sleepy student drops a calculator out of a window that's 20.7\text{ m}20.7 m20, point, 7, start text, space, m, end text off t
    10·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.
    8·1 answer
  • A molecular motor moves along a microtubule track in steps of 100 Å displacements. The motor hydrolyzes one molecule of ATP per
    6·1 answer
  • Consider the specific example of a positive charge qqq moving in the +x direction with the local magnetic field in the +y direct
    12·2 answers
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
  • Tyler drives 50km north. Tyler then drives back 30km south. What distance did he cover? What was his displacement?
    11·1 answer
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!