answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
2 years ago
8

Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.

Which of the following equations is true concerning the drift velocities vA and vB of electrons in the wires?a. vA = vB/4b. vA = vB/2c. vA = 4vBd. vA = vBe. vA = 2vB
Physics
1 answer:
WARRIOR [948]2 years ago
6 0

Answer:

V_A= \frac{I_A}{n_A e A_A}= \frac{I}{ne 4A_B}= \frac{1}{4} \frac{I}{neA_B}

V_B= \frac{I_B}{n_B e A_B}= \frac{I}{ne A_B}

And as we can see we have that:

V_A = \frac{1}{4} V_B

So then the best answer would be:

a. vA = vB/4

Explanation:

For this case we know the following conditions:

L_A = L_B =L same length

I_A = I_B =I both wires with the same current

Both wires are made of he same material, so then the number of electrons per cubic meter (n) are the same for both wires n_A = n_B =n

We also know that r_A = 2 r_B where r represent the radius.

Since we know that a wire have a cylindrical form we can find the area for each case:

A_A= \pi r^2_A = \pi (2r_B)^2 = 4 \pi r^2_B= 4 A_B

A_B = \pi r^2_B

So then we have that A_A = 4 A_B

Now we know that from the definition the drift velocity of electron in a wire is given by:

v_d = \frac{I}{neA}

Where I is the current, n the number of electrons per cubic meter, e is the charge for the electron and A the area.

If we replace we have this:

V_A= \frac{I_A}{n_A e A_A}= \frac{I}{ne 4A_B}= \frac{1}{4} \frac{I}{neA_B}

V_B= \frac{I_B}{n_B e A_B}= \frac{I}{ne A_B}

And as we can see we have that:

V_A = \frac{1}{4} V_B

So then the best answer would be:

a. vA = vB/4

You might be interested in
A certain rigid aluminum container contains a liquid at a gauge pressure of P0 = 2.02 × 105 Pa at sea level where the atmospheri
MaRussiya [10]

Answer:

dz=19217687.07\ m

Explanation:

Given:

  • initial gauge pressure in the container, P_0=2.02\times 10^{5}\ Pa
  • atmospheric pressure at sea level, P_a=1.01\times 10^5\ Pa
  • initial volume, V_0=4.4\times 10^{-4}\ m^3
  • maximum pressure difference bearable by the container, dP_{max}=2.26\times 10^{5}\ Pa
  • density of the air, \rho_a=1.2\ kg.m^{-3}
  • density of sea water, \rho_s=1.2\ kg.m^{-3}

<u>The relation between the change in pressure with height is given as:</u>

\frac{dP_{max}}{dz} =\rho_a.g_n

where:

dz = height in the atmosphere

g_n= standard value of gravity

<em>Now putting the respective values:</em>

\frac{2.26\times 10^{5}}{dz} =1.2\times 9.8

dz=19217.687\ km

dz=19217687.07\ m

Is the maximum height above the ground that the container can be lifted before bursting. (<em>Since the density of air and the density of sea water are assumed to be constant.</em>)

7 0
2 years ago
If two waves with identical crests and troughs meet, what is happening?
Nastasia [14]
<span>If two waves with identical crests and troughs meet, what is happening?
</span>C. Constructive interference is occurring. 
3 0
2 years ago
Read 2 more answers
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
A train goes up a hill with a 15º incline. If the train has constant speed of 22 m/s, what are the vertical and horizontal compo
Kobotan [32]
Any two-dimensional vector in cartesian (x,y) coordinates can be broken down into individual horizontal and vertical components using trigonometry. If a train goes up a hill with 15 degree incline at a speed of 22 m/s, the horizontal component is 22cos(15)=21.3 m/s and the vertical component is 22sin(15)=5.5 m/s. 
8 0
2 years ago
A stunt man projects himself horizontal from a height of 60m. He lands 150m away from where he was launched. How fast was he lau
koban [17]

Answer:

D) 42.87 m/s

Explanation:

First, find the time it takes him to land.  Given in the y direction:

Δy = 60 m

v₀ = 0 m/s

a = 9.8 m/s²

Find: t

Δy = v₀ t + ½ at²

60 m = (0 m/s) t + ½ (9.8 m/s²) t²

t = 3.5 s

Next, find the speed needed to travel the horizontal distance in that time.  Given in the x direction:

Δx = 60 m

a = 0 m/s²

t = 3.5 s

Find: v₀

Δy = v₀ t + ½ at²

150 m = v₀ (3.5 s) + ½ (0 m/s²) (3.5 s)²

v₀ = 42.87 m/s

4 0
2 years ago
Other questions:
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • A steady circular __________ light means drivers must stop at a marked stop line.
    7·2 answers
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • The pfsense firewall, like other firewalls on the market, relies on __________ to expose an ip address from the private network
    12·1 answer
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • Which of the following statements is false?
    6·2 answers
  • Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
    5·1 answer
  • A red cross helicopter takes off from headquarters and flies 120 km at 70 degrees south of west. There it drops off some relief
    9·1 answer
  • As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
    13·2 answers
  • A pronghorn antelope has been observed to run with a top speed of 97 km/h. Suppose an antelope runs 1.5 km with an average speed
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!