Answer:
Step-by-step explanation:
Suppose the time required for an auto shop to do a tune-up is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = points scored by students
u = mean time
s = standard deviation
From the information given,
u = 102 minutes
s = 18 minutes
1) We want to find the probability that a tune-up will take more than 2hrs. It is expressed as
P(x > 120 minutes) = 1 - P(x ≤ 120)
For x = 120
z = (120 - 102)/18 = 1
Looking at the normal distribution table, the probability corresponding to the z score is 0.8413
P(x > 120) = 1 - 0.8413 = 0.1587
2) We want to find the probability that a tune-up will take lesser than 66 minutes. It is expressed as
P(x < 66 minutes)
For x = 66
z = (66 - 102)/18 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
P(x < 66 minutes) = 0.02275
-2x + 3 > 3(2x - 1)
the inequality sign > means 'greater than'.
First simplify the right side of the equation by distributing the 3 over the parentheses:-
-2x + 3 > 6x - 3
Now add -6x to both sides of the inequality which gives us
-8x + 3 > -3
Adding -3 to both sides we have
-8x > -6
The next step is to divide both sides by -8 so x is isolated on the left side and this gives us the solution. However there is a rule with inequalities that if you divide the variable term by a negative the inequality is flipped. So in this case , greater that (>) becomes less than (<):-
-8x / -8 < -6/-8
x < 3/4 is your answer.
Given:
The system of inequalities is


To find:
The values of a for which the system has no solution.
Solution:
We have,
...(1)
It means the value of x is less than or equal to 5.
...(2)
It means the value of x is greater than or equal to a
Using (1) and (2), we get

But if a is great than 5, then there is no value of which satisfies this inequality.
Therefore, the system has no solution for a>5.
Answer:
Step-by-step explanation:
Given that the mean incubation time for a type of fertilized egg kept at a certain temperature is 25 days.
Let X be the incubation time for a type of fertilized egg kept at a certain temperature is 25 days.
X is N(25, 1)
a) Normal curve is in the attached file
b) the probability that a randomly selected fertilized egg hatches in less than 23 days
=
we convert x into Z score and use std normal distn table to find probability

i.e. we can say only 2.5% proportion will hatch in less than 23 days.