Answer:
Part A) 
Part B) She will spend more than 
Step-by-step explanation:
Let
p-----> the number of hamburger patties
Part A) Luna has to buy at least 16 packages for an upcoming picnic


Part B) Suppose she actually needs more than 150 hamburgers. How much will she spend?
Let
c---------> the total cost
step 1
Divide 150 hamburgers by 8 (a package of hamburgers)
so

round to the nearest whole number
----> the minimum number of packages
step 2


The probability the spinner lands on a prime number is 4/10 or 40%
Answer:
this is geometry?
Step-by-step explanation:
Answer:
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%5Csqrt%5B3%5D%7B3x%7D%20%7D)
Step-by-step explanation:
Given
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D)
Required
Find the products
From laws of indices;
![\sqrt[m]{a} * \sqrt[m]{b} = \sqrt[m]{a*b}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Ba%7D%20%2A%20%5Csqrt%5Bm%5D%7Bb%7D%20%3D%20%5Csqrt%5Bm%5D%7Ba%2Ab%7D)
So;
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16x^7 * 12x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B16x%5E7%20%2A%2012x%5E9%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16* x^7 * 12 * x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B16%2A%20x%5E7%20%2A%2012%20%2A%20x%5E9%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^7 * x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B16%2A12%2A%20x%5E7%20%20%2A%20x%5E9%7D)
From laws of indices

![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{7+9}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B16%2A12%2A%20x%5E%7B7%2B9%7D%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{16*12* x^{16}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B16%2A12%2A%20x%5E%7B16%7D%7D)
Expand 16 * 12
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4*4*4*3* x^{16}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B4%2A4%2A4%2A3%2A%20x%5E%7B16%7D%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = \sqrt[3]{4^3 *3* x^{16}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E3%20%2A3%2A%20x%5E%7B16%7D%7D)
From laws of imdices
![a^{\frac{1}{m}} = \sqrt[m]{a}](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7B1%7D%7Bm%7D%7D%20%3D%20%5Csqrt%5Bm%5D%7Ba%7D)
So;
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^3 *3* x^{16}})^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%5E3%20%2A3%2A%20x%5E%7B16%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4^{3*{\frac{1}{3}}} *3^{{\frac{1}{3}}}* x^{16*{\frac{1}{3}}}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%5E%7B3%2A%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%20%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%20x%5E%7B16%2A%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7D%29)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{\frac{16}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%20x%5E%7B%5Cfrac%7B16%7D%7B3%7D%7D%7D)
Divide 16 by 3 (Write as ,mixed number)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%20x%5E%7B5%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Split mixed numbers
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5+\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%20x%5E%7B5%2B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Apply law of indices
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 *3^{{\frac{1}{3}}}* x^{5}*{x ^\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%20x%5E%7B5%7D%2A%7Bx%20%5E%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Reorder
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 * x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20%2A%20x%5E%7B5%7D%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%7Bx%20%5E%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*3^{{\frac{1}{3}}}*{x ^\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%2A3%5E%7B%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%2A%7Bx%20%5E%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Apply law of indices
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3} *\sqrt[3]{x} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%2A%5Csqrt%5B3%5D%7B3%7D%20%2A%5Csqrt%5B3%5D%7Bx%7D%20%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3*x} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%2A%5Csqrt%5B3%5D%7B3%2Ax%7D%20%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}*\sqrt[3]{3x} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%2A%5Csqrt%5B3%5D%7B3x%7D%20%7D)
![\sqrt[3]{16x^7} * \sqrt[3]{12x^9} = {4 x^{5}\sqrt[3]{3x} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20%7B4%20x%5E%7B5%7D%5Csqrt%5B3%5D%7B3x%7D%20%7D)