Answer:
No, the apple will reach 4.20041 m below the tree house.
Explanation:
t = Time taken
u = Initial velocity = 2.8 m/s
v = Final velocity = 0
s = Displacement
g = Acceleration due to gravity = -9.81 m/s² = a (negative as it is going up)
Equation of motion

The height to which the apple above the point of release will reach is 0.39959 m
From the ground the distance will be 1.3+0.39959 = 1.69959 m
Distance from the tree house = 5.9-1.69959 = 4.20041 m
No, the apple will reach 4.20041 m below the tree house.
The values in the option do not reflect the answer.
Answer:
112m/s
Explanation:
14x8=112 therefore meaning the zebra would run 112m/s
Faster than. Hope this helps!!!
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
The average current density in the wire is given by:

where I is the current intensity and A is the cross-sectional area of the wire.
The cross-sectional area of the wire is given by:

where r is the radius of the wire. In this problem,
, so the cross-sectional area is

and the average current density is
