answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
2 years ago
14

Consider a boat heading due east at 15 miles/hour. The water's current is moving at 7.1 miles/hour at 45º south of east. Drag ve

ctors for the boat and the current into the vector addition simulation.
What do Rx, Ry, , and |R| represent in terms of the force of the current, and what do they represent in terms of the forces moving the boat?
Physics
2 answers:
givi [52]2 years ago
7 0

If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward.  So since the current is going at an angle then it has a x and y component.  So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.

xxTIMURxx [149]2 years ago
4 0

Answer:

The boat velocity is 20.6 mph and  14 south of east

Explanation:

For this exercise it is best to write the speeds based on its components x and y

Boat    V1x = 15 mph

Water  V2 = 7.1 mph

           θ = - 45º

 Where the angle is measured from the x axis, the negative indicates that it is measured on an hourly basis

           V2x = V2 cos (-45) = 7.1 (0.707)

           V2y = V2 sin (-45) = 7.1 (-0.707)

           V2x = 5.0 mph

           V2y = -5.0 mph

The total system speed is the sum of each component

          Vx = V1x + V2x

          Vy = V1y + V2y

          Vx = 15 + 5.0

          Vy = 0 -5

          Vx = 20 mph

          Vy = -5.0 mph

We can give result in the form of magnitude and angle

          V² = Vx² + Vy²

          θ = tan-1 (Vy / Vx)

          V = √ [20² ++ (-5)²]

          θ = tan-1 (-5/20)

         

         V = 20.6 mph

         θ = -14º

 The boat velocity is 20.6 mph and  14 south of east

You might be interested in
Consider a basketball player spinning a ball on the tip of a finger. If a player performs 1.91 J1.91 J of work to set the ball s
Black_prince [1.1K]

Answer:

ω = 4.07 rad/s

Explanation:

By conservation of the energy:

W = ΔK

1.91J = I/2*\omega^2

where I = 2/3*m*R^2=0.23kg.m^2

Solving for ω:

\omega = \sqrt{W*2/I} =4.07rad/s

7 0
2 years ago
Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
vfiekz [6]

Answer:

work is 130.5 kJ/kg

entropy change is 1.655 kJ/kg-k

maximum  theoretical work is 689.4 kJ/kg

Explanation:

piston cylinder assembly

100 bar, 360°C to 1 bar, 160°C

to find out

work  and amount of entropy  and magnitude

solution

first we calculate work i.e heat transfer - work =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C    .................1

so first we get some value from steam table with the help of 100 bar @360°C and  1 bar @ 160°C

specific volume = 0.0233 m³/kg

specific enthalpy = 2961 kJ/kg

specific internal energy = 2728 kJ/kg

specific entropy = 6.004 kJ/kg-k

and respectively

specific volume = 1.9838 m³/kg

specific enthalpy = 2795.8 kJ/kg

specific internal energy = 2597.5 kJ/kg

specific entropy = 7.659 kJ/kg-k

now from equation 1 we know heat transfer q = 0

so - w =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C

work = 2728 - 2597.5

work is 130.5 kJ/kg

and entropy change formula is i.e.

entropy change =  specific entropy ( 100 bar @360°C)  - specific entropy ( 1 bar @160°C )

put these value we get

entropy change =  7.659 - 6.004

entropy change is 1.655 kJ/kg-k

and we know maximum  theoretical work = isentropic work

from steam table we know specific internal energy is 2038.3 kJ/kg

maximum  theoretical work = specific internal energy - 2038.3

maximum  theoretical work = 2728 - 2038.3

maximum  theoretical work is 689.4 kJ/kg

3 0
2 years ago
FLASH FLOODS CAN CAUSE VEHICLES TO FLOAT AND FILL WITH WATER, TRAPPING AND DROWNING PEOPLE. WHILE ESPECIALLY DANGEROUS AT NIGHT
levacccp [35]

Answer:

FLASH FLOODS CAN CAUSE VEHICLES TO FLOAT AND FILL WITH WATER, TRAPPING AND DROWNING PEOPLE. WHILE ESPECIALLY DANGEROUS AT NIGHT AND IN DEEP WATER, EVEN ____ INCHES OF WATER CAN FLOAT SOME SMALL CARS.

The Answer is SIX Inches.

Explanation:

Flash floods: are short-term events and are associated with short, high-intensity rainfall which occur when creeks that are normally dry fill up and other creeks overflow. Densely populated areas have a high risk of flash floods. Water levels in flash floods can rise one foot in five minutes making Six inches of water able to reach the bottom of most passenger cars. Moving water will exert pressure on a car. The car floats downstream when stream force exceeds the friction force, the car will be carried when bouyancy force (which is the upward force exerted by any fluid upon a body placed in it) is greater than vehicle weight.

8 0
2 years ago
A very long uniform line of charge has charge per unit length λ1 = 4.80 μC/m and lies along the x-axis. A second long uniform li
Elodia [21]

Answer:

a) E=228391.8 N/C

b) E=-59345.91N/C

Explanation:

You can use Gauss law to find the net electric field produced by both line of charges.

\int \vec{E_1}\cdot d\vec{r}=\frac{\lambda_1}{\epsilon_o}\\\\E_1(2\pi r)=\frac{\lambda_1}{\epsilon_o}\\\\E_1=\frac{\lambda_1}{2\pi \epsilon_o r_1}\\\\\int \vec{E_2}\cdot d\vec{r}=\frac{\lambda_2}{\epsilon_o}\\\\E_2=\frac{\lambda_2}{2\pi \epsilon_o r_2}

Where E1 and E2 are the electric field generated at a distance of r1 and r2 respectively from the line of charges.

The net electric field at point r will be:

E=E_1+E_2=\frac{1}{2\pi \epsilon_o}(\frac{\lambda_1}{r_1}+\frac{\lambda_2}{r_2})

a) for y=0.200m, r1=0.200m and r2=0.200m:

E=\frac{1}{2\pi(8.85*10^{-12}C^2/Nm^2)}[\frac{4.80*10^{-6}C}{0.200m}-\frac{2.26*10^{-6}C}{0.200m}}]=228391.8N/C

b) for y=0.600m, r1=0.600m, r2=0.200m:

E=\frac{1}{2\pi(8.85*10^{-12}C^2/Nm^2)}[\frac{4.80*10^{-6}C}{0.600m}-\frac{2.26*10^{-6}C}{0.200m}}]=-59345.91N/C

5 0
2 years ago
Which diagram shows how Rachel can see a candle flame?
SIZIF [17.4K]

Answer:

C

Explanation:

If the arrows represent light rays, then Rachel sees a candle flame when the light released by the flame is received by her eyes.

5 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • A balance accurate to one-hundredth of a gram measures the mass of a rock to be 56.10 grams. How many significant digits are in
    8·2 answers
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    14·1 answer
  • 1. A car is 140 kg, and drove East 13.5 m/s. Car B is 157 kg and drove West at 10.9 m/s.
    12·1 answer
  • A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
    6·1 answer
  • A football player kicks a 0.41-kg football initially at rest; and the ball flies through the air. If the kicker's foot was in co
    5·1 answer
  • At a certain location, a gravitational force with a magnitude of 350 newtons acts on a 70.-kilogram astronaut. What is the magni
    6·1 answer
  • Which is NOT a "commonsense" psychological myth?
    12·1 answer
  • The standing vertical jump is a good test of an athlete's strength and fitness. The athlete goes into a deep crouch, then extend
    11·1 answer
  • in the space below derive two equations one in the y direction and one in the x direction expressing newton’s second law using s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!