Answer:


Explanation:
<u>Calculation of the mass of chromium as:-
</u>
Moles = 1.002 moles
Molar mass of chromium = 51.9961 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>Calculation of the mass of neon as:-
</u>
Moles =
moles
Molar mass of neon = 20.1797 g/mol
Thus,

0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
Complete Question:
In the first paragraph, the words “disrobed,” “unveiling” and “deconstructed” primarily serve to (a) highlight the negative connotations that laser technology currently has, (b) emphasize the extensive reach of laser technology; (c) demonstrate the inherently unknowable characteristics of objects, even with laser technology; (d) implicitly compare lasers to other forms of technology
Answer:
(b) emphasize the extensive reach of laser technology;
Explanation:
The use of the word disrobed and deconstructed from the passage emphasizes the extensive reach of laser technology. Even without looking up the dictionary meaning of the two words, one can easily deduce that the passage is a pro-laser technology one.
- The passage presents the use of the laser technology in solar exploration.
- It also show its use by ecologists.
#learnwithBrainly
Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>
The one property that you can always depend on to change vapor pressure is temperature. So as the water's temperature increases so does the vapor pressure. The warmer the water, the higher the vapor pressure.
Blank one: Hot water
Blank Two: Temperature