answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
2 years ago
15

A 1.0-kilogram ball is dropped from the roof of a building 40. meters tall. What is the approximate time of fall? [Neglect air r

esistance.]
Physics
2 answers:
Elza [17]2 years ago
6 0
<span>2.856s Distance traveled under constant acceleration as a function of time is given by x=(gt^2)/2 where g is the acceleration and t is time. In this case acceleration is due to gravity and is 9.81m/s^2. The distance of interest is x=40m. Substituting and solving 40=(9.81*t^2 )/ 2 80 = 9.81*t^2 8.1549 = t^2 2.856s = t</span>
Effectus [21]2 years ago
3 0
H = 40 m, the height from which the ball is dropped.
m = 1 kg, the mass of the ball

Assume g = 9.8 m/s² and neglect air resistance.

The initial vertical velocity is zero.
If t = the time of flight, then
40 m = (1/2)*g*(t s)² = 0.5*9.8*t²
t² = 40/4.9 = 8.1633
t = 2.857 s

Answer:  2.9 s (nearest tenth)
You might be interested in
A particle at 9 AM is moving towards the east at 4 ms At 12 noon, it changes its velocity and starts moving towards the north un
nexus9112 [7]

Answer:

Explanation:

Acceleration is the time rate of change of velocity.

Acceleration and velocity are vectors

If east and north are the positive directions, the east moving vector is reduced to zero and the north moving vector increases from zero to 4 m/s.

There are 3 hours or 10800 seconds between 10 AM and 1 PM

a1 = √((-4)² + 4²) / 10800 = (√32) / 10800 m/s² ≈ 4.2 x 10⁻⁴ m/s²

There are 14400 seconds between 10 AM and 2 PM

The velocity changes are still the same

a2 = √((-4)² + 4²) / 10800 = (√32) / 14400 m/s² ≈ 3.9 x 10⁻⁴ m/s²

7 0
2 years ago
A 6.0 kg box slides down an inclined plane that makes an angle of 39° with the horizontal. If the coefficient of kinetic frictio
dlinn [17]

Answer:

a = 4.72 m/s²  

Explanation:

given,

mass of the box (m)= 6 Kg

angle of inclination (θ) = 39°

coefficient of kinetic friction (μ) = 0.19

magnitude of acceleration = ?

box is sliding downward so,

F - f = m a                        

f is the friction force

m g sinθ - μ N = ma                        

m g sinθ - μ m g cos θ = ma            

a = g sinθ - μ g cos θ                    

a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°

a = 4.72 m/s²                                      

the magnitude of acceleration of the box down the slope is a = 4.72 m/s²  

3 0
2 years ago
Two 8.0 Ω lightbulbs are connected in a 12 V series circuit. What is the power of both glowing bulbs?
V125BC [204]

Answer:

18 W

Explanation:

Applying,

P = V²/R.................. Equation 1

Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs

Since: It is a series circuit,

Then,

R = R1+R2............. Equation 2

Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb

Given: R1 = R2 = 8 Ω

Substitute into equation 1

R = 8+8

R = 16 Ω

Also Given: V = 12 V

Substitute into equation 1

P = 12²/8

P = 144/8

P = 18 W

7 0
2 years ago
Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
vfiekz [6]

Answer:

work is 130.5 kJ/kg

entropy change is 1.655 kJ/kg-k

maximum  theoretical work is 689.4 kJ/kg

Explanation:

piston cylinder assembly

100 bar, 360°C to 1 bar, 160°C

to find out

work  and amount of entropy  and magnitude

solution

first we calculate work i.e heat transfer - work =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C    .................1

so first we get some value from steam table with the help of 100 bar @360°C and  1 bar @ 160°C

specific volume = 0.0233 m³/kg

specific enthalpy = 2961 kJ/kg

specific internal energy = 2728 kJ/kg

specific entropy = 6.004 kJ/kg-k

and respectively

specific volume = 1.9838 m³/kg

specific enthalpy = 2795.8 kJ/kg

specific internal energy = 2597.5 kJ/kg

specific entropy = 7.659 kJ/kg-k

now from equation 1 we know heat transfer q = 0

so - w =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C

work = 2728 - 2597.5

work is 130.5 kJ/kg

and entropy change formula is i.e.

entropy change =  specific entropy ( 100 bar @360°C)  - specific entropy ( 1 bar @160°C )

put these value we get

entropy change =  7.659 - 6.004

entropy change is 1.655 kJ/kg-k

and we know maximum  theoretical work = isentropic work

from steam table we know specific internal energy is 2038.3 kJ/kg

maximum  theoretical work = specific internal energy - 2038.3

maximum  theoretical work = 2728 - 2038.3

maximum  theoretical work is 689.4 kJ/kg

3 0
2 years ago
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
2 years ago
Other questions:
  • The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
    6·2 answers
  • Write a hypothesis about how the height of the cylinder affects the temperature of the water. Use the "if . . . then . . . becau
    14·2 answers
  • A charge q moves from point A to point B in an electric field. The potential energy of the charge at point A is 9.4 × 10-13 joul
    15·2 answers
  • A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
    10·2 answers
  • What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
    14·1 answer
  • Which of the answer choices is a true statement? Select all that apply. Metallic elements usually exist as molecules, combining
    7·1 answer
  • A ladybug rests on the bottom of a tin can that is being whirled horizontally on the end of a string. Since the ladybug, like th
    14·1 answer
  • Using your own worlds, write a brief paragraph about: (1) why substitutional vacancies exist in metals and (2) why the equilibri
    8·1 answer
  • cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
    15·1 answer
  • Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!