Before we could add these numbers, 3/8 and 7/10 need a common denominator. Both 8 and 10 go into 40.
8 goes into 40 five times
3/8= (3*5)/40 = 15/40
10 goes into 40 four times
7/10= (7*4)/40= 28/40
ANSWER: A) 15/40 and 28/40
Hope this helps! :)
Answer:
k = 11.
Step-by-step explanation:
y = x^2 - 5x + k
dy/dx = 2x - 5 = the slope of the tangent to the curve
The slope of the normal = -1/(2x - 5)
The line 3y + x =25 is normal to the curve so finding its slope:
3y = 25 - x
y = -1/3 x + 25/3 <------- Slope is -1/3
So at the point of intersection with the curve, if the line is normal to the curve:
-1/3 = -1 / (2x - 5)
2x - 5 = 3 giving x = 4.
Substituting for x in y = x^2 - 5x + k:
When x = 4, y = (4)^2 - 5*4 + k
y = 16 - 20 + k
so y = k - 4.
From the equation y = -1/3 x + 25/3, at x = 4
y = (-1/3)*4 + 25/3 = 21/3 = 7.
So y = k - 4 = 7
k = 7 + 4 = 11.
Answer:
c
Step-by-step explanation:
Answer: the length of the extended ladder is 8√3 feet or 13.9 feet
the distance between the wall and the bottom of the ladder is 4√3 feet or 6.9 feet
Step-by-step explanation:
The ladder forms a right angle triangle with the building and the ground. The length of the ladder represents the hypotenuse of the right angle triangle. The height from the top of the ladder to the base of the building represents the opposite side of the right angle triangle.
The distance from the bottom of the ladder to the base of the building represents the adjacent side of the right angle triangle.
To determine the extended length of the ladder h, we would apply
the Sine trigonometric ratio.
Sin θ = opposite side/hypotenuse. Therefore,
Sin 60 = 12/h
√3/2 = 12/h
h = 12 × 2/√3 = 24√3
h = 24√3 × √3/√3
h = 8√3
To determine the distance between the wall and the bottom of the ladder d, we would apply
the cosine trigonometric ratio.
Cos θ = adjacent side/hypotenuse.
Therefore,
Cos 60 = d/8√3
0.5 = d/8√3
d = 0.5 × 8√3
d = 4√3