Step-by-step explanation:

The simplest method is "brute force". Calculate each term and add them up.
∑ = 3(1) + 3(2) + 3(3) + 3(4) + 3(5)
∑ = 3 + 6 + 9 + 12 + 15
∑ = 45

∑ = (2×1)² + (2×2)² + (2×3)² + (2×4)²
∑ = 4 + 16 + 36 + 64
∑ = 120

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)
∑ = -4 + -2 + 0 + 2
∑ = -4
4. 1 + 1/4 + 1/16 + 1/64 + 1/256
This is a geometric sequence where the first term is 1 and the common ratio is 1/4. The nth term is:
a = 1 (1/4)ⁿ⁻¹
So the series is:

5. -5 + -1 + 3 + 7 + 11
This is an arithmetic sequence where the first term is -5 and the common difference is 4. The nth term is:
a = -5 + 4(n−1)
a = -5 + 4n − 4
a = 4n − 9
So the series is:

Answer:
20,944 years
Step-by-step explanation:
The formula you use for this type of decay problem is the one that uses the decay constant as opposed to the half life in years. We are given the k value of .00012. If we don't know how much carbon was in the bones when the person was alive, it would be safer to say that when he was alive he had 100% of his carbon. What's left then is 8.1%. Because the 8.1% is left over from 100% after t years, we don't need to worry about converting that percent into a decimal. We can use the 8.1. Here's the formula:

where N(t) is the amount left over after the decay occurs,
is the initial amount, -k is the constant of decay (it's negative cuz decay is a taking away from as opposed to a giving to) and t is the time in years. Filling in accordingly,

Begin by dividing the 100 on both sides to get

Now take the natural log of both sides. Since the base of a natual log is e, natural logs and e "undo" each other, much like taking the square root of a squared number.
ln(.081)= -.00012t
Take the natual log of .081 on your calculator to get
-2.513306124 = -.00012t
Now divide both sides by -.00012 to get t = 20,944 years
Answer:
251.047804213 miles
Step-by-step explanation:
c1 t=3.5+1 speed 40 mph
c2 t=3.5 speed 50 mph
c1 40 *4.5= 180
c2 50 *3.5= 175
a^2+ b^2= c^2
180^2+175^2=c^2
32400+30625=c^2
63025=c^2
251.047804213=c
Answer: The answer is 11 (A)
Step-by-step explanation:
A square rotated about its center by 360º maps onto itself at 90°, 180°, 270° and 360° - 4 different angles of rotation.
You can reflect a square onto itself across two diagonals and two segments that connects the middlepoints of opposite sides - 4 different lines of reflection.