All you need to do is change 5% into a decimal which would be 5/100 = .05
then multiply the decimal by the total volume to get the amount of active ingredients in ml
.05 * 56ml = 2.8 ml of active ingredient.
Hope that helps!
First convert the amount of grams you have of each substance to moles. Find your limiting reactant by calculating how many grams are needed to complete this reaction. If done correctly, you would see that we need .226 moles of Potassium to complete this reaction. However, we only have .118 moles of Potassium, so K must be our limiting reactant. Then use the moles of K to find out how many moles of K^2S are made. Then convert the amount of moles of K^2S to grams and you should get 10.3 g K^2S
A 0.200 M of K2SO4 solution is produced by diluting 20.0 mL of 5.00 M K2SO4 solution to 500.0 mL.
<u>Explanation</u>:
- When dealing with dilution we will use the following equation:
M1 V1 = M2 V2
where,
M1 = initial concentration
V1 = initial volume
M2 = final concentration
V2 = final volume
- By diluting 20.0 mL of 5.00 M K2SO4 solution to 500.0 mL, we get
M1 V1 = M2 V2
20.0 mL
5.00 M = M2
500.0 mL
M2 = (20.0 mL
5.00 M) / 500.0 mL
M2 = 0.200 M.
Hence A 0.200 M of K2SO4 solution is produced by diluting 20.0 mL of 5.00 M K2SO4 solution to 500.0 mL.
<h3>
Answer:</h3>
0.95 atm
<h3>
Explanation:</h3>
We are given;
Initial pressure, P1 = 1.0 atm
Initial temperature, T1 =298 K (25°C + 273)
Initial volume, V1 = 0.985 L
Final temperature, T2 = 295 K (22°C + 273)
Final volume, V2 = 1.030 L
We are required to find final air pressure;
Using the combined gas law;

To get, P2 ;



= 0.95 atm
Therefore, the air pressure at the top of the mountain is 0.95 atm