Answer: Molarity of
in the original sample was 1.96M
Explanation:
Molarity is defined as the number of moles of solute dissolved per liter of the solution.


Now put all the given values in the formula of molarity, we get


Thus molarity of
in the original sample was 1.96M
We can predict the order of the elements given above according from the highest to lowest first ionization energies by using the trends in a periodic table. For elements in a family, the ionization energy decreases as it goes down. Therefore, the correct order would be Be, Mg, Ca, Sr.
Answer:
By visiting other households with cats.
Explanation:
This will give Brian a variety of other houses and determine if it is truly cats or just alleries from other items. This is the most direct way to get Brian the answer he is looking for.
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Answer: 19.4 mL Ba(OH)2
Explanation:
H2(g) + Cl2(g) --> 2HCl(aq) (make sure this equation is balanced first)
At STP, 1 mol gas = 22.4 L gas. Use this conversion factor to convert the 100. mL of Cl2 to moles.
0.100 L Cl2 • (1 mol / 22.4 L) = 0.00446 mol Cl2
Use the mole ratio of 2 mol HCl for every 1 mol Cl2 to find moles of HCl produced.
0.00446 mol Cl2 • (2 mol HCl / 1 mol Cl2) = 0.00892 mol HCl
HCl is a strong acid and Ba(OH)2 is a strong base so both will completely ionize to release H+ and OH- respectively. You need 0.00892 mol OH- to neutralize all of the HCl. Note that one mole of Ba(OH)2 contains 2 moles of OH-.
0.00892 mol OH- • (1 mol Ba(OH)2 / 2 mol OH-) • (1 L Ba(OH)2 / 0.230 M Ba(OH)2) = 0.0194 L = 19.4 mL Ba(OH)2