answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
2 years ago
13

Alveolar air (a mixture of nitrogen, oxygen, and carbon dioxide) has a total pressure of 0.998 atm. If the partial pressure of o

xygen gas is 0.198 atm and the partial pressure of nitrogen gas is 0.770 atm, what is the partial pressure of carbon dioxide in millimeters of mercury?
Chemistry
1 answer:
inn [45]2 years ago
6 0

Answer:

The partial pressure of carbon dioxide is 22.8 mmHg

Explanation:

Dalton's Law is a gas law that relates the partial pressures of the gases in a mixture. This law says that the pressure of a gas mixture is equal to the sum of the partial pressures of all the gases present.

In this case:

Ptotal=Pnitrogen + Poxygen + Pcarbondioxide

You know that:

  • Ptotal= 0.998 atm
  • Pnitrogen= 0.770 atm
  • Poxygen= 0.198 atm
  • Pcarbondioxide= ?

Replacing:

0.998 atm=0.770 atm + 0.198 atm + Pcarbondioxide

Solving:

Pcarbondioxide= 0.998 atm - 0.770 atm - 0.198 atm

Pcarbondioxide= 0.03 atm

Now you apply the following rule of three: if 1 atm equals 760 mmHg, 0.03 atm how many mmHg equals?

Pcarbondioxide=\frac{0.03 atm*760 mmHg}{1 atm}

Pcarbondioxide= 22.8 mmHg

<u><em>The partial pressure of carbon dioxide is 22.8 mmHg</em></u>

You might be interested in
How many minutes would be required to electroplate 25.0 grams of chromium by passing a constant current of 4.80 amperes through
True [87]

Answer:

483.27 minutes

Explanation:

using second faradays law of electrolysis

5 0
2 years ago
Water flowing at the rate of 13.85 kg/s is to be heated from 54.5 to 87.8°C in a heat exchanger by 54 to 430 kg/h of hot gas flo
weeeeeb [17]

Answer:

=> 572.83 K (299.83°C).

=> 95.86 m^2.

Explanation:

Parameters given are; Water flowing= 13.85 kg/s, temperature of water entering = 54.5°C and the temperature of water going out = 87.8°C, gas flow rate 54,430 kg/h(15.11 kg/s). Temperature of gas coming in = 427°C = 700K, specific heat capacity of hot gas and water = 1.005 kJ/ kg.K and 4.187 KJ/kg. K, overall heat transfer coefficient = Uo = 69.1 W/m^2.K.

Hence;

Mass of hot gas × specific heat capacity of hot gas × change in temperature = mass of water × specific heat capacity of water × change in temperature.

15.11 × 1.005(700K - x ) = 13.85 × 4.187(33.3).

If we solve for x, we will get the value of x to be;

x = 572.83 K (2.99.83°C).

x is the temperature of the exit gas that is 572.83 K(299.83°C).

(b). ∆T = 339.2 - 245.33/ln (339.2/245.33).

∆T = 93.87/ln 1.38.

∆T = 291.521K.

Heat transfer rate= 15.11 × 1.005 × 10^3 (700 - 572.83) = 1931146.394.

heat-transfer area = 1931146.394/69.1 × 291.521.

heat-transfer area= 95.86 m^2.

7 0
2 years ago
Choose the correct answers from the drop-down menus to complete the paragraph about how sunlight travels through the atmosphere.
Alex_Xolod [135]

Answer: reflected, clouds, greenhouse effect.

Explanation:

  Sunlight can be absorbed, reflected , or scattered before it reaches Earth’s surface. About 30 percent of sunlight hits Earth directly, and 22 percent is filtered through clouds . Dust particles scatter short wavelengths, which causes the sky to appear blue. Earth radiates heat into the atmosphere, which traps the heat in gases, causing the greenhouse effect.

6 0
2 years ago
Read 2 more answers
What is the net ionic equation of the reaction of MgCl2 with NaOH? Express your answer as a chemical equation. View Available Hi
kari74 [83]

Answer:

Net ionic equation for the reaction between MgCl₂ and NaOH in water:

\rm Mg^{2+}\; (aq) + 2\; OH^{-}\; (aq) \to Mg(OH)_2\;(s).

Net ionic equation for the reaction between MgSO₄ and BaCl₂ in water:

\rm {Ba}^{2+}\; (aq) + {SO_4}^{2-}\;(aq) \to BaSO_4\; (s).

Explanation:

Start by finding the chemical equations for each reaction:

MgCl₂ reacts with NaOH to form Mg(OH)₂ and NaCl. This reaction is a double decomposition reaction (a.k.a. double replacement reaction, salt metathesis reaction.) This reaction is feasible because one of the products, Mg(OH)₂, is weakly soluble in water and exists as a solid precipitate.

\rm MgCl_2\; (aq) + 2\; NaOH\; (aq)\to Mg(OH)_2 \; (s) + 2\; NaCl\; (aq).

MgSO₄ reacts with BaCl₂ in a double decomposition reaction to produce BaSO₄ and MgCl₂. Similarly, the solid product BaSO₄ makes this reaction is feasible.

\rm MgSO_4\; (aq) + BaCl_2\; (aq) \to BaSO_4\; (s) + MgCl_2\; (aq).

How to rewrite a chemical equation to produce a net ionic equation?

  1. Rewrite all reactants and products that ionizes completely in the solution as ions.
  2. Eliminate ions that exist on both sides of the equation to produce a net ionic equation.

Typical classes of chemicals that ionize completely in water:

  • Soluble salts,
  • Strong acids, and
  • Strong bases.

Keep the formula of salts that are not soluble in water, weak acids, weak bases, and water unchanged.

Take the first reaction as an example, note the coefficients:

  • MgCl₂ is a salt and is soluble in water. Each unit of MgCl₂ can be written as \rm Mg^{2+} and \rm 2\; Cl^{-}.
  • NaOH is a strong base. Each unit of NaOH can be written as \rm Na^{+} and \rm OH^{-}.
  • Mg(OH)₂ is a weak base and should not be written.
  • NaCl is a salt and is soluble in water. Each unit of NaCl can be written as \rm Na^{+} and \rm Cl^{-}.

\rm Mg^{2+} + 2\; Cl^{-} + 2\; Na^{+} + 2\; OH^{-} \to Mg(OH)_2\;(s) + 2\; Na^{+} + 2\; Cl^{-}.

Ions on both sides of the equation:

  • \rm 2\; Cl^{-}, and
  • \rm 2\; Na^{+}.

Add the state symbols:

\rm Mg^{2+}\; (aq) + 2\; OH^{-}\; (aq) \to Mg(OH)_2\;(s).

For the second reaction:

\rm MgSO_4\; (aq) + BaCl_2\; (aq) \to BaSO_4\; (s) + MgCl_2\; (aq).

\rm Mg^{2+} + 2\; {SO_4}^{2-} + Ba^{2+} + 2\; Cl^{-} \to BaSO_4\; (s) + Mg^{2+} + 2\; Cl^{-}.

\rm Ba^{2+}\; (aq) + {SO_4}^{2-}\; (aq) \to BaSO_4\; (s).

5 0
2 years ago
Read 2 more answers
14. What is the pH of a 0.24 M solution of sodium propionate, NaC3H502, at 25°C? (For
Murrr4er [49]

Answer:

9.1

Explanation:

Step 1: Calculate the basic dissociation constant of propionate ion (Kb)

Sodium propionate is a strong electrolyte that dissociates according to the following equation.

NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻

Propionate is the conjugate base of propionic acid according to the following equation.

C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻

We can calculate Kb for propionate using the following expression.

Ka × Kb = Kw

Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰

Step 2: Calculate the concentration of OH⁻

The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.

[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M

Step 3: Calculate the concentration of H⁺

We will use the following expression.

Kw = [H⁺] × [OH⁻]

[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M

Step 4: Calculate the pH of the solution

We will use the definition of pH.

pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1

5 0
2 years ago
Other questions:
  • The molecular weight of a gas is ________ g/mol if 6.7 g of the gas occupies 6.3 l at stp.
    6·1 answer
  • When one atom loses an electron and another atom accepts that electron a(n) bond between the two atoms results?
    14·1 answer
  • Describe the sequence of adding ingredients to make the recipe for condensed tomato soup. To mix the ingredients, you have an in
    7·1 answer
  • The [H3O+] in a solution is increased to twice the original concentration. Which change could occur in the pH? 2.0 to 4.0 1.7 to
    14·2 answers
  • a student uses universal pH paper to find the pH of three solutions . solution A has a pH of 5 solution B has a pH of 11 and sol
    12·1 answer
  • A bar of gold is 5.0mm thick, 10.0cm long and 2.0cm wide. It has a mass of exactly 193.0g. What is the desity of gold?
    6·1 answer
  • How many L of carbon dioxide at 1.00 atm and 298.15 K are released from a car's engine upon consumption of a 60.0 L LIQUID tank
    10·1 answer
  • A 6.0M solution HCl is diluted to 1.0M How many milliliters of the 6.0M solution would be used to prepare 100.o mL of the dilute
    5·2 answers
  • The nuclear equation is incomplete. Superscript 239 Subscript 94 Baseline P u + Superscript 1 Subscript 0 Baseline n yields Supe
    15·1 answer
  • If the oxygen isotope 20O has a half-life of 15 seconds, what fraction of a sample of pure 20O remains after 1.0 minute?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!