Answer:
Step-by-step explanation:
D)hope it helpef
Answer:
r = 0.9825; good correlation.
Step-by-step explanation:
One formula for the correlation coefficient is
![r = \dfrac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{n\left [\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [\sum{y}^{2}-\left (\sum{y}\right )^{2}\right]}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cdfrac%7Bn%5Csum%7Bxy%7D%20-%20%5Csum%7Bx%7D%20%5Csum%7By%7D%7D%7B%5Csqrt%7Bn%5Cleft%20%5B%5Csum%7Bx%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7Bx%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%5Cleft%20%5B%5Csum%7By%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7By%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%7D%7D)
The calculation is not difficult, but it is tedious.
1. Calculate the intermediate numbers
We can display them in a table.
<u> </u><u>x</u> <u> y </u> <u> xy </u> <u> x² </u> <u> y² </u>
-3 -40 120 9 1600
1 12 12 1 144
5 72 360 25 5184
<u> 7</u> <u>137</u> <u> 959</u> <u>49</u> <u>18769
</u>
Σ = 10 181 1451 84 25697
2. Calculate the correlation coefficient
![r = \dfrac{n\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2}-\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{4\times 1451 - 10\times 181}{\sqrt{[4\times 84 - 10^{2}][4\times25697 - 181^{2}]}}\\\\= \dfrac{5804 - 1810}{\sqrt{[336 - 100][102788 - 32761]}}\\\\= \dfrac{3994}{\sqrt{236\times70027}}\\\\= \dfrac{3994}{\sqrt{16526372}}\\\\= \dfrac{3994}{4065}\\\\= \mathbf{0.9825}](https://tex.z-dn.net/?f=r%20%3D%20%5Cdfrac%7Bn%5Csum%7Bxy%7D%20-%20%5Csum%7Bx%7D%20%5Csum%7By%7D%7D%7B%5Csqrt%7B%5Cleft%20%5Bn%5Csum%7Bx%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7Bx%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%5Cleft%20%5Bn%5Csum%7By%7D%5E%7B2%7D-%5Cleft%20%28%5Csum%7By%7D%5Cright%20%29%5E%7B2%7D%5Cright%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B4%5Ctimes%201451%20-%2010%5Ctimes%20181%7D%7B%5Csqrt%7B%5B4%5Ctimes%2084%20-%2010%5E%7B2%7D%5D%5B4%5Ctimes25697%20-%20181%5E%7B2%7D%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B5804%20-%201810%7D%7B%5Csqrt%7B%5B336%20-%20100%5D%5B102788%20-%2032761%5D%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B%5Csqrt%7B236%5Ctimes70027%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B%5Csqrt%7B16526372%7D%7D%5C%5C%5C%5C%3D%20%5Cdfrac%7B3994%7D%7B4065%7D%5C%5C%5C%5C%3D%20%5Cmathbf%7B0.9825%7D)
The closer the value of r is to +1 or -1, the better the correlation is. The values of x and y are highly correlated.
Answer:b)0.8577
Step-by-step explanation:
Since the heights of men are normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = heights of men
u = mean height
s = standard deviation
From the information given,
u = 69 inches
s = 2.8 inches
We want to find the probability that the mean height of the 100 men is less than 72 inches.. It is expressed as
P(x < 72)
For x = 72
z = (72 - 69)/2.8 = 1.07
Looking at the normal distribution table, the probability corresponding to the z score is 0.8577
P(x < 72) = 0.8577
Answer:
1) a. False, adding a multiple of one column to another does not change the value of the determinant.
2) d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Step-by-step explanation:
1) If the multiple of one column of a matrix A is added to another to form matrix B then we get: |A| = |B|. Here, the value of the determinant does not change. The correct option is A
a. False, adding a multiple of one column to another does not change the value of the determinant.
2) Two matrices can be column-equivalent when one matrix is changed to the other using a sequence of elementary column operations. Correc option is d.
d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.