Answer:
Only Elijah's model is correct
Step-by-step explanation:
The data given in the question tells us they have 12 games left on their soccer team. Each one of them tried to simulate the fact by creating some model which look like a balance between quantities.
Elijah placed 3 cubes of value 1 and a cube of value x on one side of a balance. On the other side, he placed 15 cubes of value 1. He was obviously modeling the fact that 15 cubes (games due to play in our case) should be equal to 3 cubes (games already played) plus the x numbers left to play
This model if perfect, since the only way to equilibrate the balance is setting x to 12, the games left to play
Jonathan used a table with 3 x's in a row and a 15 in the second row, trying to model the same situation. To our interpretation, this table doesn't show the number of games left to play. If we equate 3x = 15, we get x=5 which has nothing to do with the situation explained in the question, so this model is not correct.
Answer:
100
Step-by-step explanation:
start with what's in the parenthesis':
8 (9.75 - 3.25) + 12 x 4 = 8 (6.50) + 12 x 4
then take the number outside of the parenthesis' time the number inside of them:
8 (6.50) + 12 x 4 = 52 + 12 x 4
now, take the product of the two number on the right side of the addition sign:
52 + 12 x 4 = 52 + 48
finally, add the final two numbers together:
52 + 48 = 100
<span>At least 75% of the data will fall within 2 standard deviations of the mean.
This is tricky problem. Usually when you're dealing with standard deviation, you have a bell curve, or something close to a bell curve and for such a data distribution, there will be approximately 95% of the data within 2 standard deviations of the mean. But if you don't know that you have a bell curve, you have to fall back to Chebyshev’s Theorem, which states that at least 75% of the data points will fall within 2 standard deviations of the mean for any set of numbers.</span>