Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Ammonium carbonate will form 3 moles of ions.
Methyl alcohol will form 0 moles of ions.
Methane will form 0 moles of ions.
Aluminum sulfite will form 3 moles of ions.
Hydrobromic acid will form 2 moles of ions.
Explanation:
One mole of ammonium carbonate will form 3 moles of ions when dissolved in water.
(NH₄)₂CO₃ (s) + H₂O (l) → 2 NH₄⁺ (aq) + CO₃²⁻ (aq) + H₂O (l)
One mole of methyl alcohol will form 0 moles of ions when dissolved in water.
(actually it form ions because of its acidic behavior but they are at the order of 10⁻⁷ moles, however in the framework of this question we may say that there are none)
One mole of methane will form 0 moles of ions when dissolved in water.
Methane does not react with water (in normal conditions) so will not form ions.
One mole of aluminum sulfite will form 3 moles of ions when dissolved in water.
Al₂SO₃ (s) + H₂O (l) → 2 Al₃⁺ (aq) + SO₃²⁻ (aq) + H₂O (l)
One mole of hydrobromic acid will form 2 moles of ions when dissolved in water.
HBr (l) + H₂O (l) → Br⁻ (aq) + H₃O⁺ (aq)
Learn more about:
solvation of ions
brainly.com/question/5384053
#learnwithBrainly
Answer:
Water moves into the cell
Explanation:
As shown in the question above, the cell is high in glucose and placed in a glass filled with water. This cell has a semi permeable membrane that allows only water to pass through, as the concentration of water within the cell is low, the cell will attempt to strike a balance with the medium it is inserted into. For this reason, what is likely to happen is the passage of water from the most concentrated to the least concentrated medium, that is, the water will pass from the cup to the cell.
water moves into the cell through osmosis.during osmosis water moves from a region of low concentration of solute to a region of high concentration of solute.the glucose introduced into the cell makes it more concentrated.
In this case the cell is hypertonic and water would enter into the cell through the semi permeable membrane.this membrane allows water to pass through but not glucose.this movement of water into the cell causes the cell to become turgid.
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
The way how <span>data is not actually obtained from the experiment represented in a line graph is defnitely that </span><span>a colored line with a broken line. It is a well known fact that to obtain the actual data from the experiment you there should be plotted points on the line. Hope it will help you! Regards.</span>