Answer:
In the attached image the Lewis equation is shown where it is shown how two oxygens react with two hydrogens to meet the octet of the electrons.
Explanation:
Hydrogen peroxide is one of the most named chemicals since it is not only sold as "hydrogen peroxide" in pharmacies but it is also one of the great weapons of immune defense cells to defend ourselves against anaerobic bacteria.
The disadvantage of this compound is that when dividing it forms free oxygen radicals that are considered toxic or aging for our body.
Answer:
1.822 g of magnesium hydroxide would be produced.
Explanation:
Balanced reaction: 
Compound Molar mass (g/mol)
NaOH 39.997
95.211
58.3197
So, 2.50 g of NaOH =
mol of NaOH = 0.0625 mol of NaOH
4.30 g of
=
mol of
= 0.0452 mol of 
According to balanced equation-
2 mol of NaOH produce 1 mol of
So, 0.0625 mol of NaOH produce
mol of NaOH or 0.03125 mol of NaOH
1 mol of
produces 1 mol of
So, 0.0452 mol of
produce 0.0452 mol of
As least number of moles of
are produced from NaOH therefore NaOH is the limiting reagent.
So, amount of
would be produced = 0.03125 mol
=
g
= 1.822 g
Answer : The grams of
consumed is, 89.6 grams.
Solution : Given,
Mass of
= 265 g
Molar mass of
= 80 g/mole
Molar mass of
= 28 g/mole
First we have to calculate the moles of
.

The given balanced reaction is,

from the reaction, we conclude that
As, 1 mole of
produces from 1 mole of 
So, 3.2 moles of
produces from 3.2 moles of 
Now we have to calculate the mass of 


Therefore, the grams of
consumed is, 89.6 grams.
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹
Answer:
n NaHCO3 = 9.6 E-3 mol
Explanation:
balanced reaction:
- 2 NaHCO3(s) + H2SO4(ac) ↔ Na2SO4(ac) + 2 CO2(g) + 2 H2O(l)
- assuming a concentration of H2SO4 6M....normally worked in the lab
⇒ n H2SO4 = 8 E-4 L * 6 mol/L = 4.8 E-3 mol H2SO4
according to balanced reaction, we have that for every mol of H2SO4 there are two mol of NaHCO3 ( sodium bicarbonate)
⇒ mol NaHCO3 = 4.8 E-3 mol H2SO4 * ( 2 mol NaHCO3 / mol H2SO4 )
⇒ ,mol NaHCO3 = 9.6 E-3 mol
So 9.6 E-3 mol NaHCO3, are the minimun moles necessary to neutralize the acid.