First, we assume that helium behaves as an ideal gas such that the ideal gas law is applicable.
PV = nRT
where P is pressure, V is volume, n is number of moles, R is universal gas constant, and T is temperature. From the equation, if n, R, and T are constant, there is an inverse relationship between P and V. From the given choices, the container with the greatest pressure would be the 50 mL.
Answer:
In the calorimeter, water is the <u>exothermic</u>. The salt LiCI, which will dissolve, is the <u>endothermic</u>. The final temperature of the water after the dissolution of LiCI was <u>lower</u> than the initial temperature, meaning the process is <u>exothermic</u>. In the microscopic view of the disspolution of LiCI, water molecules were seen to move <u>slowly</u> as they <u>gained </u>energy.
Explanation:
Exothermic is a process in which heat is released during the process. Endothermic reactions absorbs heat from surrounding during a chemical process. The dissolution of salt into water is an exothermic reaction. During this process heat is release and water molecules are broken down which are surrounded by salt ions.
Answer: d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
Explanation: 
As can be seen from the chemical equation, 2 moles of aluminium react with 3 moles of copper chloride.
According to mole concept, 1 mole of every substance weighs equal to its molar mass.
Aluminium is the limiting reagent as it limits the formation of product and copper chloride is the excess reagent as (14-7.5)=6.5 g is left as such.
Thus 54 g of of aluminium react with 270 g of copper chloride.
1.50 g of aluminium react with=
of copper chloride.
3 moles of copper chloride gives 3 moles of copper.
7.5 g of copper chloride gives 7.5 g of copper.
A) an acid because it turns the paper blue
These gases very rarely react, with others and also noble gases are odourless and colourless.
Explanation:
- Noble gases will not react with anything so that is the reason why they are known as an inert gas.
- Noble gases are present in group 18 on the periodic table and following the rule of the octet which is they completed their orbital by s2p6 which is the highest energy level.
- Most elements are discovering through their reactivity with the other elements, commonly with oxygen. In the case of a noble gas, it is difficult for a scientist to work with the gases which have very less or no chemical property in terms of their reactivity.