answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
2 years ago
15

2.5 moles of sodium chloride is dissolved to make 0.050 liters of solution.

Chemistry
1 answer:
ivanzaharov [21]2 years ago
3 0

The answer is:

the molarity = 50 moles/liters

The explanation:

when the molarity is = the number of moles / volume per liters.

and when the number of moles =2.5 moles

and the volume per liters = 0.05 L

so by substitution:

the molarity = 2.5moles/0.05L

                    = 50 moles /L

MARK ME BRAINLIEST PLEASE!!!!!!!!!

You might be interested in
A 0.0035 M aqueous solution of a particular compound has pH = 2.46. The compound is (A) a weak base (B) a weak acid (C) a strong
slava [35]

Answer:

(a) A strong acid

Explanation:

We have given the pH of the solution is 2.46

pH=2.46  

So the concentration of H^+=10^{-pH}=10^{-2.46}=0.00346

solution having H+ concentration more than H^+=10^{-7} is acidic

Since in the given solution, H+ concentration is 0.00346 M which is more than 10^{-7}[/tex] so this is an acidic solution

Note-The concentration of H^+ decide the behavior of the solution that is, it is acidic or basic

7 0
2 years ago
HA and HB are two strong monobasic acids. 25.0cm3 of 6.0mol/dm3 HA is mixed with 45.0cm3 of 3.0mol/dm3 HB.
Lostsunrise [7]

Answer:

The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³

(Option C)

Explanation:

Given;

concentration of HA, C_A = 6.0mol/dm³

volume of HA, V_A  = 25.0cm³, = 0.025dm³

Concentration of HB, C_B = 3.0mol/dm³

volume of HB, V_B = 45.0cm³ = 0.045dm³

To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

C_iVi = C_fV_f

where;

C_i is initial concentration

V_i is initial volume

C_f is final concentration of the solution

V_f is final volume of the solution

C_iV_i = C_fV_f\\\\Based \ on \ this\ question, we \ can \ apply\ the \ formula\ as;\\\\C_A_iV_A_i + C_B_iV_B_i = C_fV_f\\\\C_A_iV_A_i + C_B_iV_B_i = C_f(V_A_i\ +V_B_i)\\\\6*0.025 \ + 3*0.045 = C_f(0.025 + 0.045)\\\\0.285 = C_f(0.07)\\\\C_f = \frac{0.285}{0.07} = 4.07 = 4.1 \ mol/dm^3

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³

7 0
2 years ago
The boiling point of another member of this homologous series was found to be 309 KK. What is the likely molecular formula for t
Ganezh [65]

Answer: Pentane C5H12

Explanation:

The boiling point of a substance is simply defined as the temperature whereby a liquid's vapor pressure is equal to the pressure that is surrounding the liquid and hence, the liquid will changes into vapor.

The likely molecular formula for this compound is Pentane i.e C5H12 due to the fact that its boiling point is between Butane with formula C4H10 and Hexane with formula C6H14 boiling points.

8 0
2 years ago
The reaction SO2(g)+2H2S(g)←→3S(s)+2H2O(g) is the basis of a suggested method for removal of SO2 from power-plant stack gases. T
kifflom [539]

Answer : The equilibrium SO_2 pressure is, 3.93\times 10^{-5}torr

Explanation :

The given balanced chemical reaction is,

SO_2(g)+2H_2S(g)\rightleftharpoons 3S(s)+2H_2O(g)

First we have to calculate the standard free energy of reaction (\Delta G^o).

\Delta G^o=G_f_{product}-G_f_{reactant}

\Delta G^o=[n_{S(s)}\times \Delta G_f^0_{(S(s))}+n_{H_2O(g)}\times \Delta G_f^0_{(H_2O(g))}]-[n_{SO_2(g)}\times \Delta G_f^0_{(SO_2(g))}+n_{H_2S(g)}\times \Delta G_f^0_{(H_2S(g))}]

where,

\Delta G^o = standard free energy of reaction = ?

n = number of moles

Now put all the given values in this expression, we get:

\Delta G^o=[3mole\times (0kJ/mol)+2mole\times (-228.57kJ/mol)]-[1mole\times (-300.4kJ/mol)+2mole\times (-33.01kJ/mol)]

\Delta G^o=-90.72kJ/mol

Now we have to calculate the value of K_p

\Delta G^o=-RT\ln K_p

where,

\Delta G_^o =  standard Gibbs free energy  = -90.72 kJ/mol

R = gas constant = 8.314 J/mole.K

T = temperature = 298 K

K_p = equilibrium constant  = ?

Now put all the given values in this expression, we get:

-90.72kJ/mol=-(8.314J/mol.K)\times (298K) \ln K_p

K_p=7.98\times 10^{15}

Now we have to calculate the value of K_p.

The given balanced chemical reaction is,

SO_2(g)+2H_2S(g)\rightleftharpoons 3S(s)+2H_2O(g)

The expression for equilibrium constant will be :

K_p=\frac{(p_{H_2O})^2}{(p_{H_2S})^2\times (p_{SO_2})}

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Let the equilibrium SO_2 pressure be, x

Pressure of SO_2 = Pressure of H_2S = x

Now put all the given values in this expression, we get

7.98\times 10^{15}=\frac{(22)^2}{(x)^2\times (x)}

x=3.93\times 10^{-5}torr

Thus, the equilibrium SO_2 pressure is, 3.93\times 10^{-5}torr

4 0
2 years ago
A tanker truck carrying 6.05×103 kg of concentrated sulfuric acid solution tips over and spills its load. The sulfuric acid solu
irinina [24]

Answer:

6,216.684 kilograms of sodium carbonate must be added to neutralize 6.05\times 10^3 kg of sulfuric acid solution.

Explanation:

Mass of sulfuric acid solution = 6.05\times 10^3 kg=6.05\times 10^6 g

1 kg = 10^3 g

Percentage mass of sulfuric acid = 95.0%

Mass of sulfuric acid = \frac{95.0}{100}\times 6.05\times 10^6 g

=5,747,500 g

Moles of sulfuric acid = \frac{5,747,500 g}{98 g/mol}=58,647.96 mol

H_2SO_4+Na_2CO_3\rightarrow Na_2SO_4+CO_2+H_2O

According to reaction , 1 mole of sulfuric acid is neutralized by 1 mole of sodium carbonate.

Then 58,647.96 moles of sulfuric acisd will be neutralized by :

\frac{1}{1}\times 58,647.96 mol=58,647.96 mol of sodium carbonate

Mass of 58,647.96 moles of sodium carbonate :

106 g/mol\times 58,647.96 mol=6,216,683.76 g

6,216,683.76 g = 6,216,683.76 × 0.001 kg = 6,216.684 kg

6,216.684 kilograms of sodium carbonate must be added to neutralize 6.05\times 10^3 kg of sulfuric acid solution.

3 0
2 years ago
Other questions:
  • The percent by mass of copper in CuBr2 is Use mc004-1.jpg. 28.45%. 44.30%. 63.55%. 71.55%.
    12·2 answers
  • What does X represent in the formula for the compound XCl4?
    10·1 answer
  • The atomic mass of carbon is 12.01, sodium is 22.99, and oxygen is 16.00. What is the molar mass of sodium oxalate (Na2C2O4)?
    6·1 answer
  • A beaker contains a dilute sodium chloride solution at 1 atmosphere. What happens to the number of solute particles in the solut
    6·2 answers
  • A gas of potassium chlorate molecules KClO3 all decompose into potassium chloride, KCl, and diatomic oxygen, O2. The products an
    9·1 answer
  • a mixture contains cobalt metal copper metal, and tin metal. This metal is mixed with nickel nitrate. Which metals, if any will
    8·1 answer
  • Combustion analysis of a 13.42-g sample of the unknown organic compound (which contains only carbon, hydrogen, and oxygen) produ
    7·1 answer
  • Design a synthesis of 2-ethyl-2-hexenoic acid from alcohols of four carbons or fewer.
    11·1 answer
  • A solution contains one or more of the following ions: Ag + , Ca 2 + , and Co 2 + . Ag+, Ca2+, and Co2+. Lithium bromide is adde
    11·1 answer
  • Visit the interactive periodic table and locate the element neon (Ne). Use the information within the square to answer these que
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!