answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
2 years ago
10

Which statements are part of the safety protocol for this lab experiment? Check all that apply. Always wear safety goggles when

performing an experiment. Use caution when constructing the track. Pad cars with foam prior to each trial. Ensure that the track is clear before releasing cars. Bolt the ramp to both the floor and desk for support. Report all accidents to the teacher.
Physics
2 answers:
djyliett [7]2 years ago
8 0

 Always wear safety goggles when performing an experiment, especially with objects in motion.

 Make sure you understand the proper use and assembly of the cart, track, and sensors.

 Use caution when assembling and adjusting the dynamics track. Dynamics tracks may have sharp

edges or other parts that may pinch hands or fingers.

 Behavior in the lab needs to be purposeful.

 Report all accidents–no matter how big or small–to your teacher

mr_godi [17]2 years ago
4 0

Answer:

Always wear safety goggles when performing an experiment.

Use caution when constructing the track.  

Ensure that the track is clear before releasing cars.

Report all accidents to the teacher.

Explanation:

I just did this ;)

You might be interested in
49. A vertically hung 0.50-meter- long spring is stretched from its equilibrium position to a length of 1.00 meter by a weight a
Natali5045456 [20]

Answer:

K=120

Explanation:

From the question we are told that

Length of spring   l_1=0.5m

Length of stretched l_s=1m

Potential energy of spring E=15J

Generally equation for energy stored is mathematically given as

U=1/2K \triangle x^2

K=\frac{2U}{\triangle x^2}

K=\frac{2*15}{ 0.5^2}

Therefore value of the spring constant in N/m? is given as

K=120

4 0
1 year ago
A 0.10 kg piece of copper at an initial temperature of 95°c is dropped into 0.20 kg of water contained in a 0.28 kg aluminum cal
DedPeter [7]
<span>(cp of Copper = 387J / kg times degrees C; cp of Aluminum = 899 J / kg times degrees C; cp of Water = 4186J / kg times degrees C)
</span> Use the law of conservation of energy and assuming no heat loss to the surroundings, then 
 <span>Heat given up by copper = heat absorbed by water + heat absorbed by calorimeter 
</span><span> Working formula is 
</span> <span>Q = heat = MCp(delta T) 
</span><span> where 
</span><span> M = mass of the substance 
</span><span> Cp = specific heat of the substance 
</span><span> delta T = change in temperature 
</span> Heat given up by copper = 0.10(387)(95 - T) 
<span> Heat absorbed by water = 0.20(4186)(T - 15) 
</span><span> Heat absorbed by calorimeter = 0.28(899)(T - 15) 
</span> where 
<span> T = final temperature of the system 
</span><span> Substituting appropriate values, 

</span> 0.10(387)(95 - T) = 0.20(4186)(T - 15) + 0.28(899)(T - 15) 
<span> 38.7(95 - T) = 1088.92(T - 15) 
</span><span> 3676.50 - 38.7T = 1088.92T - 16333.8 
 </span><span>1127.62T = 20010.3 
</span><span> T = 17.75 C </span>
8 0
2 years ago
An individual white LED (light-emitting diode) has an efficiency of 20% and uses 1.0 W of electric power. a. How many LEDs must
Neporo4naja [7]

Answer:

8, 8 W

Explanation:

The useful power of 1 Light Emitting Diode is

0.2\times 1=0.2\ W

Total power required is 1.6 W

Number of Light Emitting Diodes would be

n=\dfrac{1.6}{0.2}\\\Rightarrow n=8

The number of Light Emitting Diodes is 8.

Power would be

P=8\times 1=8\ W

The power that is required to run the Light Emitting Diodes is 8 W

7 0
2 years ago
The graph indicates Linda’s walk.
Sedaia [141]
I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).
3 0
2 years ago
Read 2 more answers
Suppose two astronauts on a spacewalk are floating motionless in space, 3.0 m apart. Astronaut B tosses a 15.0 kg IMAX camera to
marta [7]

Answer:

\frac{ 112.5}{15+m_{A}}=v_{f}

(we need the mass of the astronaut A)

Explanation:

We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed v_{iA} of 0 m/s and a mass m_{A} and the IMAX camera with an initial speed v_{ic} of 7.5 m/s and a mass m_{c} of 15.0 kg.

The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

P_{i}=p_{ic}+p_{iA}\\P_{i}=m_{c}v_{ic}+m_{A} v_{iA}\\P_{i}=15*7.5 + m_{A}*0\\P_{i}=112.5 \frac{kg.m}{s}

By the law of conservation we know that P_{i} =P_{f}

For P_{f} (final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).

So:

P_{i} =P_{f}=112.5\\

112.5=(m_{c}+m_{A})v_{f}\\\frac{ 112.5}{m_{c}+m_{A}}=v_{f}\\\frac{ 112.5}{15+m_{A}}=v_{f}

3 0
2 years ago
Other questions:
  • If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second.
    10·2 answers
  • Choose which statements correctly identify the relationship of mass volume and density by clicking the sentence
    8·1 answer
  • Jane is a team leader. Match her leadership and teamwork skills to the appropriate descriptions.making her team understand the r
    6·1 answer
  • A car starting from rest (i.e. initial velocity = 0.0 m/s), moves in the positive X-direction with a constant average accelerati
    14·1 answer
  • The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
    11·2 answers
  • A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)
    15·1 answer
  • A baton twirler has a baton of length 0.36 m with masses of 0.48 kg at each end. Assume the rod itself is massless. The rod is f
    15·1 answer
  • For a particular type of motion, the velocity is zero but the speed is a nonzero quantity. Which statement can you make about th
    5·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
  • This is a problem about a child pushing a stack of two blocks along a horizontal floor. The masses of the blocks, and the coeffi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!