Answer:

Explanation:
Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.



The moment of inertia of the coin is:

After some algebraic handling, an expression for the maximum vertical height is derived:




Answer:
0.00066518 Nm
Explanation:
v = Velocity = 1.2 m/s
r = Distance to head = 2.3 cm
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 2.4 s
Angular speed is given by

From equation of rotational motion

Torque

The torque of the motor is 0.00066518 Nm
Answer:
B). to the right
Explanation:
Since the direction of magnetic field is into the page
So here we know that

now the velocity is from bottom to top
so we have

now the force on the moving charge is given as

now we have


so force will be towards Right
Answer:
a)693.821N/m
b)17.5g
Explanation:
We the Period T we can find the constant k,
That is

squaring on both sides,

where,
M=hanging mass, m = spring mass,
k =spring constant
T =time period
a) So for the equation we can compare, that is,

the hanging mass M is x here, so comparing the equation we know that

b) In order to find the mass of the spring we make similar process, so comparing,

kinetic energy is given as
KE = (0.5) m v²
given that : v = speed of the bottle in each case = 4 m/s
when m = 0.125 kg
KE = (0.5) m v² = (0.5) (0.125) (4)² = 1 J
when m = 0.250 kg
KE = (0.5) m v² = (0.5) (0.250) (4)² = 2 J
when m = 0.375 kg
KE = (0.5) m v² = (0.5) (0.375) (4)² = 3 J
when m = 0.0.500 kg
KE = (0.5) m v² = (0.5) (0.500) (4)² = 4 J