The answer is 45 degrees.
According to the Kinematics of projectile motion, if the purpose is to maximize range, optimum angle of landing is always 45 degrees.If the purpose is to maximize range & projection height is zero, the optimum angle of projection (and landing) is 45 degrees.
Answer:
(A) 374.4 J
(B) -332.8 J
(C) 0 J
(D) 41.6 J
(E) 351.8 J
Explanation:
weight of carton (w) = 128 N
angle of inclination (θ) = 30 degrees
force (f) = 72 N
distance (s) = 5.2 m
(A) calculate the work done by the rope
- work done = force x distance x cos θ
- since the rope is parallel to the ramp the angle between the rope and
the ramp θ will be 0
work done = 72 x 5.2 x cos 0
work done by the rope = 374.4 J
(B) calculate the work done by gravity
- the work done by gravity = weight of carton x distance x cos θ
- The weight of the carton = force exerted by the mass of the carton = m x g
- the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.
work done by gravity = 128 x 5.2 x cos 120
work done by gravity = -332.8 J
(C) find the work done by the normal force acting on the ramp
- work done by the normal force = force x distance x cos θ
- the angle between the normal force and the ramp is 90 degrees
work done by the normal force = Fn x distance x cos θ
work done by the normal force = Fn x 5.2 x cos 90
work done by the normal force = Fn x 5.2 x 0
work done by the normal force = 0 J
(D) what is the net work done ?
- The net work done is the addition of the work done by the rope, gravitational force and the normal force
net work done = 374.4 - 332.8 + 0 = 41.6 J
(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal
- work done by the rope= force x distance x cos θ
- the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp
work done = 72 x 5.2 x cos 20
work done = 351.8 J
Answer:
there will be a heat flow from water to the metal ball...
Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g