Answer:
The wavelength of the incident light is
400 nm
Explanation:
Given data
Distance between the sits

d = 1.5 ×
m
°
m = 2
We know that the wavelength of the incident light is given by

Put all the value in above formula we get
×
4 ×
m
400 nm
Therefore the wavelength of the incident light is
400 nm
Answer:
The angle is 
Explanation:
From the question we are told that
The distance of separation is 
The wavelength of light is 
Generally the condition for destructive interference is mathematically represented as
![dsin(\theta ) =[m + \frac{1}{2} ]\lambda](https://tex.z-dn.net/?f=dsin%28%5Ctheta%20%29%20%20%3D%5Bm%20%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%5D%5Clambda)
Here m is the order of maxima, first minimum (dark space) m = 0
So
![100 *10^{-6 } * sin(\theta ) =[0 + \frac{1}{2} ]600 *10^{-9}](https://tex.z-dn.net/?f=100%20%2A10%5E%7B-6%20%7D%20%2A%20%20sin%28%5Ctheta%20%29%20%20%3D%5B0%20%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%5D600%20%2A10%5E%7B-9%7D)
=> ![\theta = sin^{-1} [0.003]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%5E%7B-1%7D%20%5B0.003%5D)
=> 
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
Given that,
Length of the building, l = 631 m
Breadth of the building, b = 707 yards
Height of the building, h = 110 ft
1 meter = 3.28084 feet
631 m = 2070.21 feet
1 yard= 3 feet
707 yards = 2121 feet
(a) The volume of any cuboidal shape is given by :



(b) 


Hence, this is the required solution.
Explanation:
The given data is as follows.
Mass of the ornament (
) = 0.9 kg
Length of the wire (l) = 1.5 m
Mass of missile (
) = 0.4 kg
Initial speed of missile (
) = 12 m/s
r = 1.5 m
According to the law of conservation of momentum,

Putting the given values into the above formula as follows.


0 + 4.8 = 1.3v
v = 3.69 m/s
Now, the centrifugal force produced is calculated as follows.

= 
= 11.80 N
Hence, tension in the wire is calculated as follows.
T = 
= 
= 24.54 N
Thus, we can conclude that tension in the wire immediately after the collision is 24.54 N.