As we know that

here we know that


now from above equation we have


so image will form on left side of lens at a distance of 15 cm
This image will be magnified and virtual image
Ray diagram is attached below here
Ethylene glycol is termed as the primary ingredients in antifreeze.
The ethylene glycol molecular formula is C₂H₆O₂.
Molar mass of C₂H₆O₂ is = (2×12) +(6×1) + (216) = 62g/mol
Now that antifreeze by mass is 50%, then there is 1kg of ethylene glycol which is present in 1kg of water.
ΔTf = Kf×m
ΔTf = depression in the freezing point.
= freezing point of water freezing point of the solution
= O°c - Tf
= -Tf
Kf = depression in freezing constant of water = 1.86°C/m
M is the molarity of the solution.
=(mass/molar mass) mass of solvent in kg
=1000g/62 (g/mol) /1kg
=16.13m
If we plug the value we get
-Tf = 1.86 × 16.13 = 30
Tf = -30°c
Answer:
T=183.21K
Explanation:
We have to take into account that the system is a ideal gas. Hence, we have the expression

where P is the pressure, V is the volume, n is the number of moles, T is the temperature and R is the ideal gas constant.
Thus, it is necessary to calculate n and V
V is the volume of a sphere

V=8.86*10^{50}L
and for n

Hence, we have (1 Pa = 9.85*10^{-9}atm)

hope this helps!!
Answer:
On the other hand, Florida's Gulf Coast experiences the greatest number of thunderstorms out of any U.S. location. These types of storms occur on average 130 days per year in Florida.
Answer:
Tangential velocity = 10.9 m/S
Explanation:
As per the data given in the question,
Force = 20 N
Time = 1.2 S
Length = 16.5 cm
Radius = 33.0 cm
Moment of inertia = 1200 kg.cm^2 = 1200 × 10^(-4) kg.m^2
= 1200 × 10^(-2) m^2
Revolution of the pedal ÷ revolution of wheel = 1
Torque on the pedal = Force × Length
= 20 × 16.5 10^(-2)
= 3.30 N m
So, Angular acceleration = Torque ÷ Moment of inertia
= 3.30 ÷ 12 × 10^(-2)
= 27.50 rad ÷ S^2
Since wheel started rotating from rest, so initial angular velocity = 0 rad/S
Now, Angular velocity = Initial angular velocity + Angular Acceleration × Time
= 0 + 27.50 × 1.2
= 33 rad/S
Hence, Tangential velocity = Angular velocity × Radius
= 33 × 33 × 10^(-2)
= 10.9 m/S