The equation for Hall voltage Vh is:
Vh=v*B*w, where v is the velocity of the strip, B is the magnitude of the magnetic field, and w is the width of the strip.
v=25 cm/s = 0.25 m/s
B=5.6 T
w= 1.2 mm = 0.0012 m
We input the numbers into the equation and get:
Vh= 0.25*5.6*0.0012 = 0.00168 V
The maximum Hall voltage is Vh= 0.00168 V.
Answer:
(A) 374.4 J
(B) -332.8 J
(C) 0 J
(D) 41.6 J
(E) 351.8 J
Explanation:
weight of carton (w) = 128 N
angle of inclination (θ) = 30 degrees
force (f) = 72 N
distance (s) = 5.2 m
(A) calculate the work done by the rope
- work done = force x distance x cos θ
- since the rope is parallel to the ramp the angle between the rope and
the ramp θ will be 0
work done = 72 x 5.2 x cos 0
work done by the rope = 374.4 J
(B) calculate the work done by gravity
- the work done by gravity = weight of carton x distance x cos θ
- The weight of the carton = force exerted by the mass of the carton = m x g
- the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.
work done by gravity = 128 x 5.2 x cos 120
work done by gravity = -332.8 J
(C) find the work done by the normal force acting on the ramp
- work done by the normal force = force x distance x cos θ
- the angle between the normal force and the ramp is 90 degrees
work done by the normal force = Fn x distance x cos θ
work done by the normal force = Fn x 5.2 x cos 90
work done by the normal force = Fn x 5.2 x 0
work done by the normal force = 0 J
(D) what is the net work done ?
- The net work done is the addition of the work done by the rope, gravitational force and the normal force
net work done = 374.4 - 332.8 + 0 = 41.6 J
(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal
- work done by the rope= force x distance x cos θ
- the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp
work done = 72 x 5.2 x cos 20
work done = 351.8 J
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
Answer:
The correct answers are
The following statements are true about an object in two-dimensional projectile motion with no air resistance
D) The speed of the object is zero at its highest point.
E) The horizontal acceleration is always zero and the vertical acceleration is always a non-zero constant downward
Explanation:
A) The speed of the object is constant but its velocity is not constant.
False the vertical velocity increases on descent
B) The acceleration of the object is constant but its object is + g when the object is rising and -g when it is falling.
False, the acceleration is -g when the object is rising
C) The acceleration of the object is zero at its highest point.
False, the acceleration is constant in magnitude throughout the motion
D) The speed of the object is zero at its highest point.
True, the direction of motion changes at the highest point from hence the body comes to rest and the speed is zero
E) The horizontal acceleration is always zero and the vertical acceleration is always a non-zero constant downward
True, the horizontal acceleration has associated force during motion but the vertical acceleration is due to gravity which is constant downwards
Answer:
160 Hz , 240 Hz , 400 Hz
Explanation:
Given that
Frequency of forth harmonic is 320 Hz.
Lets take fundamental frequency = f₁

f₁=80 Hz
Frequency of first harmonic = f₂
f₂=2 f₁
f₂ =2 x 80 = 160 Hz
Frequency of second harmonic = f₃
f₃= 3 f₁=3 x 80 = 240 Hz
Frequency of fifth harmonic = f₅
f₅= 5 f₁= 5 x 80 = 400 Hz
Three frequencies are as follows
160 Hz , 240 Hz , 400 Hz