Answer:
a). Determine the magnitude of the gravitational force exerted on each by the earth.
Rock: 
Pebble: 
(b)Calculate the magnitude of the acceleration of each object when released.
Rock: 
Pebble: 
Explanation:
The universal law of gravitation is defined as:
(1)
Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.
<em>Case for the rock </em>
<em>:</em>
m1 will be equal to the mass of the Earth
and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth
.

Newton's second law can be used to know the acceleration.

(2)

<em>Case for the pebble </em>
<em>:</em>


Answer:
A ferromagnetic material is a temporary magnet. The domains in a ferromagnetic material are randomly arranged. Under certain actions, the domains align in a particular direction and the material acts as a magnet. The actions that can cause alignment of domains in a ferromagnetic material are:
- rubbing the material against a magnet would cause the alignment of domains in the same direction as of the magnet.
- passing electricity around the material would generate magnetic field which would cause domains to align along the direction of the field.
- placing the material near a strong magnet would cause the alignment of domains in the direction of the field generated by the strong magnet.
Other actions like heating the material, placing the material in a magnetic field of opposite polarity and hitting the material would lead to demagnetization of the magnetic material.
Answer:
the answer the correct one is the d
Explanation:
In the gate rotation experiment several things are measured.
- the distance from the hinges to the applied force, which must be measured with a tape measure
- The value of the force that is devised with a dynamometer
- the rotated angle that is measured with a protractor
- the time it takes to turn an angle, which is measured with a stopwatch
When examining the answer the correct one is the d
Answer:
static friction acting opposite to the direction of travel
Explanation:
Because the Frictional force of the front wheels act to oppose the spinning, so, For the front wheels to roll without slipping, the friction must be static friction pointing in the direction of travel of the car.
Explanation: