answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
2 years ago
8

Consider a turntable to be a circular disk of moment of inertia It rotating at a constant angular velocity ωi around an axis thr

ough the center and perpendicular to the plane of the disk (the disk's "primary axis of symmetry"). The axis of the disk is vertical and the disk is supported by frictionless bearings. The motor of the turntable is off, so there is no external torque being applied to the axis. Another disk (a record) is dropped onto the first such that it lands coaxially (the axes coincide). The moment of inertia of the record is Ir. The initial angular velocity of the second disk is zero. There is friction between the two disks. After this "rotational collision," the disks will eventually rotate with the same angular velocity.
Physics
1 answer:
Rom4ik [11]2 years ago
7 0

Answer:

Note: Angular momentum is always conserved in a collision.

The initial angular momentum of the system is

L = ( It ) ( ωi )

where It = moment of inertia of the rotating circular disc,

ωi = angular velocity of the rotating circular disc

The final angular momentum is

L = ( It + Ir ) ( ωf )

where ωf is the final angular velocity of the system.

Since the two angular momenta are equal, we see that

( It ) ( ωi ) = ( It + Ir ) ( ωf )

so making ωf the subject of the formula

ωf = [ ( It ) / ( It + Ir ) ] ωi

Explanation:

You might be interested in
At 213.1 K a substance has a vapor pressure of 45.77 mmHg. At 243.7 K it has a vapor pressure of 193.1 mm Hg. Calculate its heat
vlabodo [156]

Answer:

20.3125 kJ/mol

Explanation:

P_{i} = initial vapor pressure = 45.77 mm Hg

P_{f} = final vapor pressure = 193.1 mm Hg

T_{i} = initial temperature = 213.1 K

T_{f} = final temperature = 243.7 K

H = Heat of vaporization

Using the equation

ln\left ( \frac{P_{f}}{P_{i}} \right ) = \left ( \frac{-H}{R} \right )\left ( \frac{1}{T_{f}} - \frac{1}{T_{i}}\right)

ln\left ( \frac{193.1}{45.77} \right ) = \left ( \frac{-H}{8.314} \right )\left ( \frac{1}{243.7} - \frac{1}{213.1}\right)

H = 20312.5 J/mol

H = 20.3125 kJ/mol

8 0
2 years ago
29. 2072 Set C Q.No. 10c
Annette [7]

Answer:

90.2^{\circ}C

Explanation:

Considering the thermal conductivity of aluminium and brass as k_{al}=205 W/mK and k_{br}=109 W/mk respectively  

The temperature at the end of aluminium and brass are given as T_{al}=150^{\circ}C and T_{br}=20^{\circ}C respectively with length of rod L=1.3 m , Length of aluminium L_{al}=0.8 m, length of brass L_{br}=0.5 m and letting temperature at steady state be T

At steady state, thermal conductivity of both aluminium and brass are same hence

H_{br}=H_{al}

k_{al}A\frac {T_H-T}{L_{al}}= k_{br}A\frac {T-T_H}{L_{br}}

Upon re-arranging

T=\frac {k_{al}L_{al}T_{br}+k_{al}L_{br}T_{al}}{k_{br}L_{al}+k_{al}L_{br}}

(205)\frac {150-T}{0.8}=109\frac {T-20}{0.5}

T=\frac {(109*0.8*20)+(205*0.5*150)}{(109*0.8)+(205*0.5)}

T=90.2^{\circ}C

Therefore, the temperatures at which the metals are joined is 90.2^{\circ}C

6 0
2 years ago
A driver in a car traveling at a speed of 21.8 m/s sees a cat 101m away on the road. How long will it take for the car to accele
Ket [755]

The answer would be 9.1 s


8 0
2 years ago
For the Texas Department of Public Safety, you are investigating an accident that occurred early on a foggy morning in a remote
Bad White [126]

Answer:

JRJJEJERJRJERERJREREJERJJERJERTJE

ExpJERlanation:

SDSHERHJRESHERDHEDGERJEJERJERJERRJERSH

5 0
2 years ago
What is the total flux φ that now passes through the cylindrical surface? enter a positive number if the net flux leaves the cyl
trasher [3.6K]

Net flux through the cylindrical surface is given as

\phi = \frac{q}{epsilon_0}

here q = enclosed charge in the surface

so here in order to find the value of q

q = \lambda* L

so now we have

\phi = \frac{\lambda * L}{\epsilon_0}

so this is the total flux

now by Gauss's law we can find the electric field

\int E.dA = \phi

\int E.dA = \frac{\lambda * L}{\epsilon_0}

E* 2\pi rL = \frac{\lambda * L}{epsilon_0}

E = \frac{\lambda}{2\pi \epsilon_0 r}

<em>by above expression we can find the electric field at required position</em>

8 0
2 years ago
Other questions:
  • How does increasing the distance between charged objects affect the electric force between them? the electric force increases be
    12·2 answers
  • A small smooth object slides from rest down a smooth inclined plane inclined at 30degrees horizontal.What is the acceleration do
    5·1 answer
  • You are learning about energy transformations in science class. Mel and Sam's built this set-up to see if light energy could be
    6·1 answer
  • An object is placed 18 cm in front of spherical mirror.if the image is formed at 4cm to the right of the mirror, calculate it's
    9·1 answer
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • Let A be the last two digits and let B be the sum of the last three digits of your 8-digit student ID. (Example: For 20245347, A
    6·1 answer
  • Suppose the fetus's ventricular wall moves back and forth in a pattern approximating simple harmonic motion with an amplitude of
    9·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • An archer draws her bow and stores 34.8 J of elastic potential energy in the bow. She releases the 63 g arrow, giving it an init
    10·1 answer
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!