answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
2 years ago
6

a nurse practitioner orders Medrol to be given 1.5 mg/kg of body weight. if a child weighs 72.6lb and the available stock of Med

rol is 20.mg/mL, how many mL do you give to the child
Chemistry
1 answer:
Harrizon [31]2 years ago
8 0
Answer is: 2,469 mL give to the child.
The mass m in kilograms (kg) is equal to the mass m in pounds (lb) times 0,45359237: m(child) = 72,6 · 0,045359237 = 32,93 kg.
m(Medrol) = 32,93 kg · 1,5 mg/kg.
m(Medrol) = 49,39 mg.
d(Medrol) = 20,0 mg/mL.
V(Medrol) = m(Medrol) ÷ d(Medrol).
V(Medrol) = 49,39 mg ÷ 20 mg/mL.
V(Medrol) = 2,469 mL.

You might be interested in
Which of the following actions cannot induce voltage in a wire?
MariettaO [177]
Your answer is D. Since there is little to no magnetic field to  wire, if it is copper which most wires are, there will be no voltage in a wire.
7 0
2 years ago
Read 2 more answers
Write the electron configurations for the following ions:
Ket [755]

Answer:

Co²⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷

Sn²⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰

Zr⁴⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Ag⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 4d¹⁰

S²⁻ : 1s² 2s² 2p⁶ 3s² 3p⁶

Explanation:

Cobalt (Co): atomic number 27

<u>The electronic configuration of Co in ground state: </u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷

<u>The electronic configuration of Co in +2 oxidation state (Co²⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷

Tin (Sn): atomic number 50

<u>The electronic configuration of Sn in ground state: </u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p²

<u>The electronic configuration of Sn in +2 oxidation state (Sn²⁺) </u>:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰

Zirconium (Zr): atomic number 40

<u>The electronic configuration of Zr in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d²

<u>The electronic configuration of Zr in +4 oxidation state (Zr⁴⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Silver (Ag): atomic number 47

<u>The electronic configuration of Ag in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d¹⁰

<u>The electronic configuration of Ag in +1 oxidation state (Ag⁺) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 4d¹⁰

Sulphur (S): atomic number 16

<u>The electronic configuration of S in ground state:</u>

1s² 2s² 2p⁶ 3s² 3p⁴

<u>The electronic configuration of S in -2 oxidation state (S²⁻) :</u>

1s² 2s² 2p⁶ 3s² 3p⁶

8 0
2 years ago
Read 2 more answers
Give two areas where the compressible nature of gas is applied​
galina1969 [7]

Answer:

1. Gases can be easily liquefied into very small volumes and stored in liquid form Eg in LPGA cylinders and used in homes.

2. Balloons can be easily filled with air.

6 0
1 year ago
The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of 1.01 g/mL is __________% by
amm1812

Answer:

The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of 1.01 g/mL is 12.90% by mass

Explanation:

2.23 M aqueous solution of NaCl means there are 2.23 moles of NaCl in 1000 mL of solution.

We know that density is equal to ratio of mass to volume.

Here density of solution is 1.01 g/mL.

So mass of 1000 mL solution = (1.01\times 1000) g = 1010 g

molar mass of NaCl = 58.44 g/mol

So mass of 2.23 moles of NaCl = (2.23\times 58.44) g = 130.3 g

% by mass  is ratio of mass of solute to mass of solution and then  multiplied by 100.

Here solute is NaCl.

So % by mass of 2.23 M aqueous solution of NaCl = \frac{130.0}{1010}\times 100% = 12.90%

3 0
2 years ago
Drinking water may contain a low concentration of lead ion (Pb2 ) due to corrosion of old lead pipes. The EPA has determined tha
Lynna [10]

Answer:

3.861x10⁻⁹ mol Pb⁺²

Explanation:

We can <u>define ppm as mg of Pb²⁺ per liter of water</u>.

We<u> calculate the mass of lead ion in 100 mL of water</u>:

  • 100.0 mL ⇒ 100.0 / 1000 = 0.100 L
  • 0.100 L * 0.0080 ppm = 8x10⁻⁴ mg Pb⁺²

Now we <u>convert mass of lead to moles</u>, using its molar mass:

  • 8x10⁻⁴ mg ⇒ 8x10⁻⁴ / 1000 = 8x10⁻⁷ g
  • 8x10⁻⁷ g Pb²⁺ ÷ 207.2 g/mol = 3.861x10⁻⁹ mol Pb⁺²
4 0
2 years ago
Other questions:
  • Which statement is true? Nuclear power plants require more fuel than conventional power plants. There is a short supply of high
    13·2 answers
  • HBr + H₂SO₄ SO₂ + Br₂ + H₂O
    15·2 answers
  • If you compared 1 m solutions, was a 1 m nacl solution more or less hypertonic than a 1 m sucrose solution? what is your evidenc
    5·1 answer
  • Why is liquid mercury a good electrical conductor in terms of atomic structure?
    8·2 answers
  • Colorful fireworks often involve the decomposition of barium nitrate and potassium chlorate and the reaction of the metals magne
    9·1 answer
  • If a reaction produces 1.506 kJ of heat, which is trapped in 30.0 g of water initially at 26.5 C on a clorimetr liake hat in Fig
    15·1 answer
  • Phosphorous and chlorine gases combine to produce phosphorous trichloride: P2(g)+3Cl2(g)→2PCl3(g) ΔG∘ at 298K for this reaction
    14·1 answer
  • A fossil is found to have a 14 C 14C level of 70.0 70.0 % compared to living organisms. How old is the fossil?
    12·1 answer
  • Which method of drawing hydrocarbons is the fastest to draw?
    15·1 answer
  • If two gases react, pumping more gas into the reaction container will _____ the rate of the reaction.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!