Answer:
b
. Irradiated food is shown to not be radioactive.
Explanation:
If it can be proven that irradiated food is not radioactive, then it will effective dispute the idea that irradiated food are less safe to eat.
- An irradiated food is one in which ionizing radiations have been employed to improve food quality.
- Thus, bacteria and other food spoilers can be exterminated from the food.
- Most irradiated food do not contain radiation and are fit for consumption.
If it can be proven, that this is true, then it will challenge the idea that irradiated foods are not safe.
Answer:
Explanation:
We have in this question the equilibrium
X ( g ) + Y ( g ) ⇆ Z ( g )
With the equilibrium contant Kp = pZ/(pX x pY)
The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional
pV = nRT ⇒ p = nRT/V and n/V is molarity.
Therefore we can calculate the reaction quotient Q
Qp = pZ/(pX x pY) = 1/ 1 x 0.5 atm = 2
Since Qp is greater than Kp the system proceeds from right to left.
We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.
Answer: 178.9 g
Explanation:
Density = 
find volume of the cube: (5.80 cm) (5.80 cm) (5.80cm) = 195.112 cm³
1.0 cm³ = 1.0 mL
so 195.112 cm³ = 195.112 mL
plug value into density equation:
0.917 g/mL = (mass) / (195.112 mL)
and solve for mass!
Answer: the heat-sensitive glassware that were given are : Volumetric and Graduated cylinder.
Explanation:glass material that reacts to ambient temperatures radiated off of other surfaces like hands or water is known as heat sensitive glassware. They are not meant to be heated and could shatter if exposed to a heat source. Examples from the video includes Volumetric and Graduated cylinder. Hope this helps. Thanks.
Answer: The molecular formula will be 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of C= 70.6 g
Mass of H = 5.9 g
Mass of O = 23.5 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of H =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For O =
The ratio of C : H: O= 4: 4:1
Hence the empirical formula is 
The empirical weight of
= 4(12)+4(1)+1(16)= 68g.
The molecular weight = 136 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=