Acetaldehyde is an organic compound (a compound containing C atoms) composed of a carbonyl group. On the other hand, a carbonyl group is a functional group containing C = O. The hybrid orbitals of a compound determines the number pi and s orbitals in the electronic configuration. For a single bond, there are two s orbitals. For double bonds, on the other hand, the number of s orbital bond is 1 while the number of pi bonds is 2. For triple bonds, there are three pi bonds present in the cloud.
Thus for a c = O bond, the atomic orbital configuration is sp3 containing 1 s orbital and 2 pi bonds.
0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46
Answer:
Negative sign says that release of heat.
Explanation:
The expression for the calculation of the heat released or absorbed of a process is shown below as:-
Where,
is the heat released or absorbed
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass = 25.2 g
Specific heat = 0.444 J/g°C
So,
Negative sign says that release of heat.