Answer:
He burnt 1000 calories per hour when playing basketball.
Step-by-step explanation:
Let B be calories burned playing basketball, and C calories burned canoing.
1800 = B + 2C
3200 = 2B + 3C
From 1st equatipn, we get that B = 1800 - 2C
Replacing into the 2nd equation, we have:
3200 = 2(1800-2C) + 3C
3200 = 3600 - 4C + 3C
3200 = 3600 - 1C
C = 3600 - 3200
C = 400
Knowing C, we find B.
B = 1800 - 2C = 1800 - 2*400 = 1800 - 800 = 1000 calories.
Answer:
There is a 54% chance that the Jets will win the Stanley Cup.
Step-by-step explanation:
Since two hockey teams, the Winnipeg Jets and the Toronto Maple Leafs, miraculously make it to the Stanley Cup finals, where as soon as a team wins 3 games, the championship is over, and the schedule for the playoffs for home games is: Jets - Leafs - Jets - Leafs - Jets; since if the Jets are playing at home, there is a 60% chance they'll win, while if they are playing on the road, there is a 45% chance they'll win, to find the probability that the Jets win the Stanley Cup the following calculation must be performed:
(0.60 + 0.45 + 0.60 + 0.45 + 0.60) / 5 = X
2.70 / 5 = X
0.54 = X
Thus, there is a 54% chance that the Jets will win the Stanley Cup.
The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
Answer:
Methods of obtaining a sample of 600 employees from the 4,700 workforce:
Part A: The type of sampling method proposed by the CEO is Convenience Sampling.
Part B: When there are equal number of participants in both campuses, stratification by campus would give a more precise approximation of the proportion of employees who are satisfied with the cleanliness of the breakrooms than stratification by gender. Another method to ensure that stratification by campus gives a more precise approximation of the proportion of employees who are satisfied with the cleanliness of the breakrooms than stratification by gender is to ensure that the sample is proportional to the proportion of each campus to the whole population or workforce.
Step-by-step explanation:
A Convenience Sampling technique is a non-probability (non-random) sampling method and the participants are selected based on availability (early attendees). The early attendees might be different from the late attendees in characteristics such as age, sex, etc. Therefore, sampling biases are present. All non-probability sampling methods are prone to volunteer bias.
Stratified sampling is more accurate and representative of the population. It reduces sampling bias. The difficulty arises in choosing the characteristic to stratify by.
I believe the correct answers are:
<span>UV = 14 ft and m∠TUV = 45°</span>
<span>ST = 20 ft, UV = 14 ft, and m∠UST = 98°
Or, in other words, Options A and D.
</span>