We will assume that the only reactants are x and y and that the only product is xy.
Based on the law of mass conservation, mass is an isolated system that can neither be created nor destroyed.
Applying this concept to the chemical reaction, we will find that the total mass of the reactants must be equal to the total mass of the products,
therefore:
mass of x + mass of y = mass of xy
12.2 + mass of y = 78.9
mass of y = 78.9 - 12.2 = 66.7 grams
Answer:
1.8 × 10⁻¹⁶ mol
Explanation:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹
1.2 + 3s 2s
![K_{sp} =\text{[Sr$^{2+}$]$^{3}$[PO$_{4}^{3-}$]$^{2}$} = (1.2 + 3s)^{3}\times (2s)^{2} = 1.0 \times 10^{-31}\\\text{Assume } 3s \ll 1.2\\1.2^{3} \times 4s^{2} = 1.0 \times 10^{-31}\\6.91s^{2} = 1.0 \times 10^{-31}\\s^{2} = \dfrac{1.0 \times 10^{-31}}{6.91} = 1.45 \times 10^{-32}\\\\s = \sqrt{ 1.45 \times 10^{-32}} = 1.20 \times 10^{-16} \text{ mol/L}\\](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BSr%24%5E%7B2%2B%7D%24%5D%24%5E%7B3%7D%24%5BPO%24_%7B4%7D%5E%7B3-%7D%24%5D%24%5E%7B2%7D%24%7D%20%3D%20%281.2%20%2B%203s%29%5E%7B3%7D%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C%5Ctext%7BAssume%20%7D%203s%20%5Cll%201.2%5C%5C1.2%5E%7B3%7D%20%5Ctimes%204s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C6.91s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B1.0%20%5Ctimes%2010%5E%7B-31%7D%7D%7B6.91%7D%20%3D%201.45%20%5Ctimes%2010%5E%7B-32%7D%5C%5C%5C%5Cs%20%3D%20%5Csqrt%7B%201.45%20%5Ctimes%2010%5E%7B-32%7D%7D%20%3D%201.20%20%5Ctimes%2010%5E%7B-16%7D%20%5Ctext%7B%20mol%2FL%7D%5C%5C)
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹ = 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹ = 1.8 × 10⁻¹⁶ mol
Answer:
Mass = 14.64 g
Explanation:
Given data:
Volume of solution = 1.25 L
Molarity of Solution = 0.15 M
Mass of CaF₂ = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
We will calculate the number of moles of CaF₂ and then determine the mass by using number of moles.
0.15 M = number of moles of solute / 1.25 L
number of moles of solute = 0.15 M × 1.25 L
number of moles of solute = 0.1875 mol/L × L
number of moles of solute = 0.1875 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.1875 mol ×78.07 g/mol
Mass = 14.64 g
Answer:
You will get 5.0 g of hydrogen.
Explanation:
As with any stoichiometry problem, we start with the balanced equation.
Sn
l
+
2HF
→
SnF
2
+
H
2
Moles of H
2
=
2.5
mol Sn
×
1 mol H
2
1
mol Sn
=
2.5 mol H
2
Mass of H
2
=
2.5
mol H
2
×
2.016 g H
2
1
mol H
2
=
5.0 g H
2
The answer to this question is "carrying capacity." The term "growth
rate," refers to how fast a population grows, and the term "population
density," refers to the number of organisms located within a specific
area. Carrying capacity is correct because is directly addresses the
maximum number of organisms that an ecosystem can handle, as opposed to
how fast they are growing or how many there currently are.