Answer:
a. y equals one third times x plus 10
= y = 1/3(x) + 10
Step-by-step explanation:
Let us represent:
Let the original final plan = x
Let the current flight plan = y
The initial time of departure = 4.00pm
Her flight was then delayed for 10 minutes
We are told in the question that:
The current flight plan allows her arrive at her destination three times faster.
This means y= (1/3)x
y = x/3
Hence the equation generated =
y = x/3 +10
y = 1/3(x) + 10
Water was pumped out in t-hours.
Time t would be the domain, 0 to t.
The theorem tells you angles complementary to the same angle are congruent. Both 4 and 1 are complementary to 5, so 4 and 1 are congruent.
The angle congruent to 4 is 1.
You haven't provided the choices, therefore, I cannot provide an exact answer. However, I will help you with the concept.
For an order pair to be a solution to a system of equations, it has to satisfy <u>BOTH</u> equations. If it satisfies only one equation of the system or satisfy neither of the equations, the, it is not a solutions
<u><em>Examples:</em></u>
<u>System 1:</u>
x = y + 1
2x + 3y = 7
Let's check (2,1)
2 = 1 + 1 ........> equation 1 is satisfied
2(2) + 3(1) = 7 ......> equation 2 is satisfied
<u>(2,1) is a solution to this system</u>
<u>System 2:</u>
y = x + 3
y = x - 1
Let's check (2,1):
1 ≠ 2 + 3 ........> equation 1 isn't satisfied
1 = 2 - 1 ..........> equation 2 is satisfied
<u>(2,1) isn't a solution to this system</u>
<u>System 3:</u>
2y = 9 - 3x
3x + 2y = 9
Let's ceck (2,1):
2(1) ≠ 9 - 3(2) ..........> equation 1 isn't satisfied
3(2) + 2(1) ≠ 9 .........> equation 2 isn't satisfied
<u>(2,1) isn't a solution to this system
</u>
<u><em>Based on the above,</em></u> all you have to do is substitute with (2,1) in the system you have and pick the one where both equations are satisfied
Hope this helps :)
Answer:
a) 47.55
b) 58
c) 47.88
Step-by-step explanation:
Given that the size of the orders is uniformly distributed over the interval
$25 ( a ) to $80 ( b )
<u>a) Determine the value for the first order size generated based on 0.41</u>
parameter for normal distribution is given as ; a = 25, b = 80
size/value of order = a + random number ( b - a )
= 25 + 0.41 ( 80 - 25 )
= 47.55
<u>b) Value of the last order generated based on random number (0.6)</u>
= a + random number ( b - a )
= 25 + 0.6 ( 80 - 25 )
= 25 + 33 = 58
<u>c) Average order size </u>
= ∑ order 1 + order 2 + ----- + order 10 ) / 10
= (47.55 + ...... + 58 ) / 10
= 478.8 / 10 = 47.88